二烷硫基噻吩—二噻并苯并二噻吩基共軛聚合物的合成與研究
[Abstract]:The active layer material is the core part of the polymer solar cell device. The optimization and improvement of its performance is very important to improve the efficiency of the solar cell device. By optimizing the material in the active layer, the organic light energy battery device with excellent photoelectric performance can be obtained. This paper is in the 5,10 of the DTBDT unit. By introducing an alkyl side chain of thiophene sulfur, a new electron donor unit, DTBDT-TS., was synthesized for the first time by DTBDT-TS and receptor units (2,1,3- benzothiazole /5,6- bis 2,1,3- benzothiazole two azole, naphthalene and [1,2-c:5,6-c'] double [1,2,5] thiothiazoles, thioisoindigo and other derivatives) synthesized by Stille coupling reaction. The D-A type copolymer of narrow band gap is listed, and the thermal stability, absorption spectrum and electrochemical performance of the polymer are characterized. The molecular optimal model of the polymer, the dihedral angle and the HOMO, LUMO energy level orbit are estimated, and the photovoltaic performance of the polymer is preliminarily studied. First, the alkthiophene side chain is introduced to the DTBDT unit and the electricity is prepared. The subunit DTBDT-TS. is used as a conjugate bridge with DTBDT-TS and BT and FBT, 2- butyl octyl thiophene, and two narrow band gap conjugated polymers, PDTBDT-TS-DTBT and PDTBDT-TS-DTFBT., are characterized by Stille coupling. The results show that the conjugated polymer PDTBDT-TS-DTBT and PDTBDT-TS-DTFBT are absorbed to the sun light in the 300-800 nm range and the optical band gap is in the band gap. 1.67 and 1.68 eV, respectively, LUMO is -3.55 and -3.71 eV, respectively, HOMO is -5.22 and -5.39eV., respectively, but it is found that the solubility of the polymer in the common organic solvent is poor in the dissolution test. Therefore, the larger alkyl side chain (2- octyl twelve alkyl) is introduced, and the solubility of the polymer is improved by optimizing the receptor monomer. Two kinds of polymer PDTBDT-TS-DTBT2 and PDTBDT-TS-DTFBT2 were synthesized, and the thermal stability was not reduced, the optical band gap was slightly increased and the energy level kept constant. The structure of the polymer solar device was the PDTBDT-TS-DTBT2:PC61BM=1:1.5 blend film of the photoactive layer of the ITO/PFN/Polymer:PC61BM/MoO3/Ag. polymer solar cell, At the same time, when 3%DIO is added, the photoelectric conversion efficiency of the device is up to 3.47% (its VOC=0.81 V, JSC=6.53 mA/cm2, FF=65.69%). The mass ratio of the photoactive layer PDTBDT-TS-DTFBT2:PC61BM of the polymer solar cell is 1:1.5, and the photoelectric conversion efficiency of the device is higher than 4.61% when the 3%DIO is added. The fluoro substituted polymers show better photovoltaic properties and better molecular planarity, which is beneficial to the transport of carriers, thus obtaining high short-circuit current, and finally obtaining high energy conversion efficiency. Secondly, the polymer PDTBDT-TS-DTNTHD is obtained by coupling reaction of the donor cell DTBDT-TS and the receptor unit DTNTHD, which is the polymer. The compound has good film forming properties, the thermal decomposition temperature is 347 C, the absorption range is stronger in the visible light area, the absorption range is from 300 to 800 nm, the maximum absorption peak in the film state is at 672nm, the optical band gap is 1.67 e V.HOMO and LOMO energy level is -5.35 and -3.68 eV. as the active layer with PDTBDT-TS-DTNTHD:PC61BM blend membrane, adding 3%DIO. The open circuit voltage and short circuit current of the post device all increase, and the maximum energy conversion efficiency is 2.03% (its VOC=0.78 V, JSC=6.80 mA/cm2, FF=38.3%). Again, the polymer PDTBDT-TS-TIID is obtained by Stille coupling reaction between the donor unit DTBDT-TS and the receptor unit TIID. The polymer has a good film forming performance and the thermal decomposition temperature is 344. The optical band gap of the polymer PDTBDT-TS-TIID is only 1.28 eV, which has strong absorption in the visible region, the absorption range is expanded from 300 to 1000 nm, the HOMO and LUMO energy levels are -5.28 and -4.00 eV., respectively, with PDTBDT-TS-TIID:PC61BM=1:1.5 blend membrane as the active layer, and the energy conversion efficiency of the added 3%DIO prepared by 3%DIO is the highest (VOC=0). .47 V, JSC=3.13 mA/cm2, FF=44.84%).
【學位授予單位】:蘭州交通大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM914.4
【參考文獻】
相關期刊論文 前10條
1 李明嬌;郭鵬智;同軍鋒;;二噻并苯并二噻吩基有機太陽能電池給體材料的研究進展[J];廣州化工;2017年04期
2 李婉寧;姚惠峰;侯劍輝;;苯并噻二唑單元在聚合物光伏材料設計中的應用[J];高分子通報;2016年09期
3 王迅昶;周文佩;汪鋒;夏養(yǎng)君;;氟原子對苯并二噻吩類共軛聚合物光伏性能的影響[J];廣州化工;2016年14期
4 盧夢霞;張濤;王文;凌啟淡;;基于萘二酰亞胺受體單元的n-型聚合物受體材料在光電領域的研究進展[J];化學進展;2016年06期
5 宋成杰;王二靜;董兵海;王世敏;;非富勒烯類有機小分子受體材料[J];化學進展;2015年12期
6 袁延華;同軍鋒;;基于苯并二噻吩不同側(cè)鏈共聚物的合成及光伏性能[J];廣州化工;2015年09期
7 方少明;蘇濟功;王國浩;薛力昆;張永輝;杜俊平;;4,6-2,1,3-苯并噻二唑:一種新的聚合物光電功能材料構筑砌塊和多性能調(diào)節(jié)劑[J];有機化學;2015年07期
8 Shaoqing Zhang;Long Ye;Wenchao Zhao;Bei Yang;Qi Wang;Jianhui Hou;;Realizing over 10% efficiency in polymer solar cell by device optimization[J];Science China Chemistry;2015年02期
9 劉鵬;孫江曼;趙寶鋒;黃飛;吳宏濱;陳軍武;曹鏞;;聚合物光伏材料與器件研究進展[J];中國科學:化學;2013年11期
10 孟祥悅;蔣禮;舒春英;王春儒;;聚合物太陽能電池中富勒烯受體材料研究進展[J];科學通報;2012年36期
相關博士學位論文 前2條
1 黨東鋒;含噻吩或噻吩稠環(huán)單元的有機光伏材料的合成及其性能研究[D];湘潭大學;2015年
2 李昱鵬;CN-PPV體系的光化學與光物理性質(zhì)研究[D];吉林大學;2008年
相關碩士學位論文 前10條
1 袁延華;三烷基硅乙炔基二噻并苯并二噻吩—共軛聚合物的合成與表征[D];蘭州交通大學;2015年
2 李朋;基于異靛藍及其衍生物的共軛聚合物的合成與性能研究[D];合肥工業(yè)大學;2015年
3 李源科;5,,10-二烷基噻吩基二噻并苯并二噻吩聚合物的合成及表征[D];蘭州交通大學;2014年
4 付官文;聚合物太陽能電池材料的設計合成與性能研究[D];南昌航空大學;2012年
5 張文慶;高效有機聚合物太陽能電池的制備及性能表征[D];武漢理工大學;2012年
6 呂晶;基于P3HT:PCBM聚合物太陽電池的研究[D];北京交通大學;2011年
7 李政;新型有機電荷傳輸材料的設計合成及性能研究[D];大連理工大學;2011年
8 孫天兵;P3HT:PCBM聚合物太陽能電池特性研究[D];哈爾濱工業(yè)大學;2011年
9 徐軍;聚合物太陽能電池材料的設計合成與性能研究[D];南昌航空大學;2011年
10 李彬;用于太陽能電池的窄帶隙共軛聚合物的合成與性能研究[D];西北師范大學;2011年
本文編號:2144129
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2144129.html