基于多元狀態(tài)估計(jì)的電站風(fēng)機(jī)故障預(yù)警研究及系統(tǒng)開發(fā)
[Abstract]:Fan is an important auxiliary equipment in thermal power station. Its running state directly affects the economy and safety of electric power production. With the rapid development of large capacity and high-parameter thermal power units, the reliability of fan equipment is required higher in power plants. At present, the status recognition technology of industrial equipment is developing from condition monitoring and fault diagnosis to fault warning. This paper mainly studies the fault warning method of power plant fan based on multivariate state estimation technology, which can save valuable time to take measures to reduce the fault loss or avoid the fault, and bring huge economic benefits to the power generation enterprise. In this paper, the structure and common faults of fan are studied, the monitoring signal of fault is analyzed, and the monitoring signal that can be obtained by fan in power station is summarized. On this basis, according to the principles of "available", "fault sensitivity" and "minimization", the fan MSET modeling variables are selected. Then the historical data are eliminated, bearing temperature 3 is taken 1, standardized three items are preprocessed, and the dynamic process memory matrix construction method is put forward to establish the MSET model of fan normal state. Finally, using the historical data of the normal state of the induced fan in a power plant for modeling and simulation, it is verified that the established fan state model has a high accuracy. The research on the state modeling of MSET fan shows that the difference between the observation vector and the estimation vector is rich in fault information. In order to fully mine fault information and capture fault development process, the similarity function of observation vector and estimation vector is proposed to measure the difference between them quantitatively, and according to the importance of each variable to fault early warning. The weight of each variable in the similarity function is determined by analytic hierarchy process (AHP). Then the sliding window statistics method is used to reduce the influence of random interference and the reasonable threshold of fault warning is determined according to the average similarity boundary value of normal state. A fault warning method based on MSET fan model is proposed. If the average similarity of the new observation vector exceeds the warning threshold, then the fault alarm can be issued to the operator to deal with it. Finally, an application study is carried out on a fan fault and three kinds of simulated faults in a power plant. The results show that the proposed method can detect the early fault of fan and realize accurate early warning of fan fault. Using the early-warning method and B / S structure proposed in this paper, a set of power fan fault warning system is developed. The practical application shows that the fault early warning method based on MSET fan state model can realize accurate fan fault early warning. At the same time, it provides a feasible solution for other industrial equipment failure warning.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TM621
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 任國賢;;小型風(fēng)機(jī)故障及修理[J];電機(jī)技術(shù);1986年04期
2 張懷亮,朱臘梅;計(jì)算機(jī)輔助風(fēng)機(jī)故障及狀態(tài)管理[J];風(fēng)機(jī)技術(shù);2002年04期
3 楊宏暉;侯宏;曾向陽;孫進(jìn)才;;基于聲信號(hào)人耳聽覺譜特征的風(fēng)機(jī)故障診斷[J];儀器儀表學(xué)報(bào);2009年01期
4 黃生琪,周菊華;風(fēng)機(jī)故障判斷并處理[J];電站輔機(jī);2003年02期
5 曾偉泉;曾志生;;煤氣鼓風(fēng)機(jī)故障診斷實(shí)例分析[J];中國設(shè)備工程;2008年10期
6 劉旭;王莉;;基于多征兆系統(tǒng)的模糊Petri網(wǎng)在風(fēng)機(jī)故障診斷中的應(yīng)用[J];黑龍江科技信息;2008年35期
7 羅長更;曹廣忠;潘劍飛;;基于小波和神經(jīng)網(wǎng)絡(luò)的風(fēng)機(jī)故障診斷系統(tǒng)設(shè)計(jì)[J];應(yīng)用聲學(xué);2008年03期
8 張宇;羅長更;;一種基于LabVIEW DSP模塊的風(fēng)機(jī)故障診斷系統(tǒng)[J];計(jì)算機(jī)與現(xiàn)代化;2010年06期
9 王惠;;淺談風(fēng)機(jī)的事故及處理措施[J];民營科技;2012年11期
10 章瑞平,張笑秋;灰色關(guān)聯(lián)度法對風(fēng)機(jī)故障的自動(dòng)診斷[J];中國設(shè)備管理;1997年10期
相關(guān)會(huì)議論文 前4條
1 王雷;李佳;孫紅春;林文強(qiáng);;基于知識(shí)規(guī)則的風(fēng)機(jī)故障診斷系統(tǒng)的研究與實(shí)現(xiàn)[A];2010年全國機(jī)械行業(yè)可靠性技術(shù)學(xué)術(shù)交流會(huì)暨第四屆可靠性工程分會(huì)第二次全體委員大會(huì)論文集[C];2010年
2 唐邵軍;陳平;謝志江;;基于全息譜分析的風(fēng)機(jī)故障診斷系統(tǒng)的研究[A];設(shè)備監(jiān)測與診斷技術(shù)及其應(yīng)用——第十二屆全國設(shè)備監(jiān)測與診斷學(xué)術(shù)會(huì)議論文集[C];2005年
3 胡漢輝;譚青;;基于小波包分析及模糊識(shí)別的風(fēng)機(jī)故障診斷[A];第二十九屆中國控制會(huì)議論文集[C];2010年
4 許秋慧;李紅;;唐鋼南區(qū)2~#高爐風(fēng)機(jī)故障燜爐實(shí)踐[A];河北冶金學(xué)會(huì)煉鐵技術(shù)暨學(xué)術(shù)年會(huì)論文集[C];2007年
相關(guān)重要報(bào)紙文章 前1條
1 通訊員 高慶華邋記者 張?jiān)破?大慶電力實(shí)業(yè)公司獲中國石油建設(shè)工程優(yōu)秀QC小組成果一等獎(jiǎng)[N];中國石油報(bào);2008年
相關(guān)碩士學(xué)位論文 前10條
1 劉東;基于多變量數(shù)據(jù)的礦井風(fēng)機(jī)故障預(yù)測系統(tǒng)的研究[D];河北工程大學(xué);2016年
2 劉濤;基于多元狀態(tài)估計(jì)的電站風(fēng)機(jī)故障預(yù)警研究及系統(tǒng)開發(fā)[D];華北電力大學(xué)(北京);2016年
3 王衍學(xué);基于小波和支持向量機(jī)的風(fēng)機(jī)故障趨勢預(yù)測研究[D];廣西大學(xué);2006年
4 唐炳劍;小波分析及其在風(fēng)機(jī)故障診斷中的應(yīng)用[D];山東大學(xué);2010年
5 胡友林;基于粗糙集的風(fēng)機(jī)故障診斷專家系統(tǒng)研究[D];武漢科技大學(xué);2006年
6 宋子輝;基于模糊神經(jīng)網(wǎng)絡(luò)技術(shù)的D350高速風(fēng)機(jī)故障診斷系統(tǒng)研究[D];中南大學(xué);2004年
7 成健;模糊診斷法在風(fēng)機(jī)故障診斷中的研究與應(yīng)用[D];遼寧科技大學(xué);2012年
8 賀鵬;基于多小波理論的風(fēng)機(jī)故障診斷技術(shù)研究[D];天津理工大學(xué);2013年
9 高明;火電廠送風(fēng)機(jī)故障預(yù)警系統(tǒng)的研究[D];華北電力大學(xué);2013年
10 徐盛龍;基于DSP與ARM相結(jié)合的風(fēng)機(jī)故障診斷及監(jiān)測系統(tǒng)設(shè)計(jì)[D];中國礦業(yè)大學(xué);2014年
,本文編號(hào):2143836
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2143836.html