二氧化錳電極材料的制備及其超級(jí)電容器性能的研究
[Abstract]:As a new type of energy storage device, supercapacitor is widely concerned because of its advantages of high power density, fast charging and discharging speed, long cycle life, and so on. Manganese dioxide (MnO_2) is an important supercapacitor because of its rich reserves, low price, high theoretical ratio (up to 1370 F g~ (-1)) and wide potential window. However, due to the poor self conductivity of the manganese dioxide electrode material, the development of the high capacitive manganese based supercapacitor is limited. This paper uses nanostructured manganese dioxide and high conductivity materials to improve the electrochemical performance of manganese based supercapacitors. The nanostructured manganese dioxide electrode materials and three dimensional MnO_2/AgNW composites were prepared successfully. The electrochemical performance of the prepared electrode materials was systematically studied by means of cyclic voltammetry, constant current charge discharge, and AC impedance, and the MnO_2/ AgNW composite was assembled into a flexible symmetric supercapacitor. The assembly process and charge discharge performance were optimized. The main contents and results were as follows: 1. a three dimensional peony shaped MnO_2/FTO plate electrode material with sodium ore and a trapezoid manganese ore structure was prepared by using the series resistance chronograph and two growth techniques in the constant current charge discharge process. With different capacitance, the specific capacitance can reach 1260 F g~ (-1) under the current density of 10 A g~ (-1). After 10000 constant current charging and discharging cycle, its capacitance retention rate is different from that of the traditional timing current method. The MnO_2 electrode material prepared by the series resistor timing current method can grow two times during the cycle process. The two growth results in the change of the MnO_2 crystal structure, which obviously improves the surface / near surface and the pseudo capacitance in the body. The energy storage mechanism is studied by the AC impedance, cyclic voltammetry and the constant flow discharge test, and the first principle calculation. It is found that the contribution of the surface capacitance and the volume capacitance is related to the scanning rate. The division of the total capacitance and the redox peak at different scanning rates are proved. The special structure of the MnO_2 can be used for micro supercapacitors, while the unique self repair characteristics presented in the secondary growth process are especially suitable for the micro supercapacitor field of the maintenance free and long life micro supercapacitor, which is guided by the silver nanowire layer as the guide. In order to avoid the loss of AgNW layer in the process of electrodeposition, the AgNW layer was welded under the condition of 300 oC to avoid the loss of AgNW layer in the process of electrodeposition, and the phase of the AgNW layer was welded on the condition of 300 oC in the process of electrodeposition. The intersecting AgNW forms the welding point, which can obviously improve the conductivity and the cycle life of the electrode material. In the constant current charge discharge process, the morphology of the three-dimensional MnO_2/AgNW composite electrode is gradually transformed from the flower structure to honeycomb, thus increasing the specific capacity gradually from the initial 423.5 F g~ (-1) to 663.4 F g~ (-1). After 7000 constant current charging and discharging, the 156.6%.3., whose specific capacitance is increased to the initial value, is based on the excellent electrochemical performance presented by the above MnO_2/AgNW composite. The electrode material is prepared into a flexible symmetric filter paper based MnO_2/AgNW supercapacitor device. In order to avoid the problem of falling off the AgNW layer on the filter paper, the AgNW layer is pressurized. When the scavenging speed is 10 mV/s, the specific capacitance of the electrode material of the flexible supercapacitor device is 166.6 F g~ (-1). During the 10000 constant current charge discharge test, it can still show good cyclic stability. When the flexible device is bent, the specific capacity of the flexible device can still maintain the specific capacity of 101.4 F g~ (-1).
【學(xué)位授予單位】:濟(jì)南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM53
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;我國第一種國產(chǎn)超級(jí)電容器通過鑒定[J];測控技術(shù);2000年12期
2 劉建新;超級(jí)電容器在直流電源系統(tǒng)中的應(yīng)用[J];華東交通大學(xué)學(xué)報(bào);2002年03期
3 桂長清;新型貯能單元超級(jí)電容器[J];電池工業(yè);2003年04期
4 ;超級(jí)電容器[J];電源世界;2004年03期
5 文建國,周震濤,文衍宣;超級(jí)電容器材料研究的辯證思維[J];東莞理工學(xué)院學(xué)報(bào);2004年01期
6 李薦,鐘暉,鐘海云,戴艷陽,溫俊杰;超級(jí)電容器應(yīng)用設(shè)計(jì)[J];電源技術(shù);2004年06期
7 Bobby Maher;;超級(jí)電容器簡介[J];今日電子;2006年01期
8 王鑫;;超級(jí)電容器在汽車啟動(dòng)中的應(yīng)用[J];國外電子元器件;2006年05期
9 Matt Reynolds;;替代能源中的超級(jí)電容器介紹[J];今日電子;2006年07期
10 陳新麗;李偉善;;超級(jí)電容器電極材料的研究現(xiàn)狀與發(fā)展[J];廣東化工;2006年07期
相關(guān)會(huì)議論文 前10條
1 馬衍偉;張熊;余鵬;陳堯;;新型超級(jí)電容器納米電極材料的研究[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
2 張易寧;何騰云;;超級(jí)電容器電極材料的最新研究進(jìn)展[A];第二十八屆全國化學(xué)與物理電源學(xué)術(shù)年會(huì)論文集[C];2009年
3 鐘輝;曾慶聰;吳丁財(cái);符若文;;聚苯乙烯基層次孔碳的活化及其在超級(jí)電容器中的應(yīng)用[A];中國化學(xué)會(huì)第15屆反應(yīng)性高分子學(xué)術(shù)討論會(huì)論文摘要預(yù)印集[C];2010年
4 趙家昌;賴春艷;戴揚(yáng);解晶瑩;;扣式超級(jí)電容器組的研制[A];第十二屆中國固態(tài)離子學(xué)學(xué)術(shù)會(huì)議論文集[C];2004年
5 單既成;陳維英;;超級(jí)電容器與通信備用電源[A];通信電源新技術(shù)論壇——2008通信電源學(xué)術(shù)研討會(huì)論文集[C];2008年
6 王燕;吳英鵬;黃毅;馬延風(fēng);陳永勝;;單層石墨用作超級(jí)電容器的研究[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊)[C];2009年
7 趙健偉;倪文彬;王登超;黃忠杰;;超級(jí)電容器電極材料的設(shè)計(jì)、制備及性質(zhì)研究[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場摘要集[C];2010年
8 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應(yīng)的新型超級(jí)電容器——多孔碳電極材料的影響[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場摘要集[C];2010年
9 馬衍偉;;新型超級(jí)電容器石墨烯電極材料的研究[A];第七屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第7分冊)[C];2010年
10 劉不厭;彭喬;孫s,
本文編號(hào):2140828
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2140828.html