VRLA蓄電池SOC估算策略的研究
[Abstract]:Battery is widely used in photovoltaic power system, wind power system, uninterruptible power supply system (UPS), lighting and electric vehicle for its advantages of large capacity, low cost, good safety, mature technology, abundant raw materials and no maintenance. Is the most widely used secondary battery, so far no battery can completely replace it. In order to improve the working efficiency and prolong the service life of the battery, it is necessary to estimate the residual capacity or the state of charge (SOC) accurately. But the SOC estimation needs to establish the battery equivalent circuit model, selects the suitable estimation method, therefore this article aims at the valve type sealed lead acid (VRLA) battery, This paper focuses on the estimation of SOC and focuses on the following aspects: firstly, the working principle and characteristics of VRLA battery are analyzed, and the charge-discharge rate and ambient temperature are described. The influence of battery health on SOC: the SOC estimation methods at home and abroad are introduced, such as ampere-hour method, electromotive force method, neural network method, fuzzy method and Kalman filter algorithm. Several commonly used equivalent circuit models of battery are analyzed and compared emphatically. The improved PNGV model is selected as the model of battery SOC estimation. The parameters of the model are identified by HPPC pulse experiment, and the parameters of the model are fitted by cftool tool. Two methods are used to estimate SOC through comparative analysis: one is an improved ampere-hour method combined with electromotive force method. Because the amperage method is only affected by the operating current of the battery and the charge / discharge rate, it can make up for the defect of the electromotive force method which depends on the electromotive force model, and the accumulated error problem of the ampere-hour method can also be corrected by the electromotive force method. Therefore, in this paper, the EMF method and the modified ampere-hour method are used to estimate SOC through parallel weighted structure, so that the two methods can complement each other and improve the precision of SOC estimation. Another method is extended Kalman filter (EKF) algorithm. According to the improved PNGV model, the state equation and observation equation of battery system are established, and the steps of estimating SOC by EKF are determined, and the minimum mean-variance estimation of SOC is realized. The off-line simulation with MATLAB shows that the estimation results are close to the theoretical value. EKF has high precision and has a broad application prospect in the field of SOC estimation of batteries. Therefore, it is necessary to further realize the engineering of SOC estimation based on EKF.
【學(xué)位授予單位】:寧夏大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TM912
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳達(dá)明;;VRLA厚積待發(fā)——閥控式密封鉛酸蓄電池的優(yōu)良特性及應(yīng)用[J];每周電腦報(bào);2002年12期
2 朱茂華,倪豐萍,王瑜,王金玉;VRLA電池灌酸量簡(jiǎn)便計(jì)算法[J];蓄電池;2005年02期
3 宋波,衣守忠;VRLA電池放電數(shù)據(jù)處理方法[J];蓄電池;2005年02期
4 張芬;;VRLA電池失效模式的改善[J];中國(guó)建設(shè)動(dòng)態(tài).陽(yáng)光能源;2006年04期
5 蘇炳文;杜慶軍;崔利民;;VRLA蓄電池早期失效分析及對(duì)策[J];華北電力技術(shù);2007年S1期
6 俞震;胡偉;;基于偏差分析的VRLA蓄電池智能管理與檢測(cè)方法[J];電源技術(shù)應(yīng)用;2008年05期
7 張雷霆;;通信VRLA蓄電池的維護(hù)保養(yǎng)與常見(jiàn)故障處理[J];數(shù)據(jù)通信;2009年04期
8 項(xiàng)文敏;周鳳滿;;穿壁焊在VRLA蓄電池制造中的應(yīng)用[J];蓄電池;2010年04期
9 張賓;畢金波;崔忠彬;謝永才;;電動(dòng)汽車用VRLA電池溫度特性及建模分析[J];電池工業(yè);2013年Z1期
10 胡耀東;漫話VRLA電池的結(jié)構(gòu)設(shè)計(jì)和試制步驟[J];蓄電池;2001年04期
相關(guān)會(huì)議論文 前10條
1 趙鍵;柏凡淋;;VRLA電池早期失效原因探討[A];中國(guó)電池工業(yè)協(xié)會(huì)2002年學(xué)術(shù)交流會(huì)論文集[C];2002年
2 吳壽松;;VRLA電池技術(shù)的改進(jìn)措施[A];中國(guó)電池工業(yè)協(xié)會(huì)2002年學(xué)術(shù)交流會(huì)論文集[C];2002年
3 李樹(shù)俊;;內(nèi)催化VRLA電池用催化劑選擇的探討[A];中國(guó)電工技術(shù)學(xué)會(huì)第八屆學(xué)術(shù)會(huì)議論文集[C];2004年
4 韓冬梅;由成良;;VRLA電池在線監(jiān)測(cè)機(jī)理[A];2007第二屆全國(guó)廣播電視技術(shù)論文集2(下)[C];2007年
5 郭樹(shù)師;;通信用VRLA蓄電池修復(fù)循環(huán)利用技術(shù)[A];通信電源新技術(shù)論壇——2008通信電源學(xué)術(shù)研討會(huì)論文集[C];2008年
6 楊s,
本文編號(hào):2135341
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2135341.html