高壓架空輸電線路動(dòng)態(tài)增容風(fēng)險(xiǎn)評(píng)估研究
[Abstract]:High voltage overhead transmission line dynamic capacity enhancement technology is an effective way to improve the transmission capacity of existing transmission lines without building new transmission lines. Unfortunately, although dynamic capacity-increasing technology can improve the transmission capacity of the line, there is a certain degree of risk, which is mainly caused by the measurement error of meteorological parameters and the calculation error of the model itself. It is worth noting that more dynamic compatibilization models are strongly dependent on meteorological parameters which increases the risk of dynamic compatibilization. Based on the above situation, this paper studies the risk assessment of dynamic capacity increase of high voltage overhead lines, and puts forward a risk assessment model for dynamic capacity increase of high voltage overhead lines based on transient equivalent wind speed coefficient. In order to reduce the dependence of dynamic compatibilization system on meteorological parameters and evaluate the risk of increasing capacity more accurately, it can provide the basis for the safe implementation of dynamic capacity increase. Firstly, the dynamic capacitive model of overhead transmission lines proposed by domestic and foreign scholars is studied in this paper. The IEEE model, the thermal path model and the equivalent wind speed coefficient model are studied deeply. When the meteorological conditions change rapidly, the IEEE standard model is not accurate enough to calculate the carrier flow, and the IEEE model neglects the influence of natural convection heat dissipation in the calculation of the carrier flow. The thermal path model neglects the uneven temperature distribution of the conductor and replaces the temperature of the whole wire with the temperature of a point on the wire. There is a calculation error. The equivalent wind speed coefficient model reduces the dependence on meteorological parameters, but the calculation error is large when the conductor temperature and wind speed coefficient are fluctuating. Secondly, because the results of the risk assessment model should be predictable, the proposed dynamic capacitive risk assessment model should be used in combination with the short-term current prediction algorithm in practical engineering. In order to improve the accuracy of short-term current prediction, this paper presents a prediction model based on wavelet packet transform and peak-type Markov chain to estimate the short-term current of future lines, and through the current, weather and temperature data of a certain city in Jiangsu province in June 2013. Experimental verification was carried out. At the same time, the proposed prediction model is compared with the similar day model based on fuzzy clustering and the BP neural network model based on fuzzy clustering similarity day. The experimental results show that the prediction model based on wavelet packet transform and peak-type Markov chain can fully extract effective information and predict it with high accuracy by decomposing and reconstructing historical data. In this paper, the model is selected to predict the short term current of the line, which provides the current error for the risk assessment model of dynamic capacity increase. Finally, this paper presents a dynamic capacitive model for HV overhead transmission lines based on the transient equivalent wind speed coefficient. The model can reduce the dependence on meteorological parameters, simplify the dynamic capacitive system, and improve the accuracy and accuracy of the line load calculation. Reliable risk assessment of line dynamic capacity increase. In addition, by adding predictive current error into the experiment, it can be proved that the proposed dynamic capacitive risk assessment model will be affected by the accuracy of the line current prediction method in practical application. When the precision of current prediction is not high, the risk of capacitive leakage can be avoided by reducing the maximum allowable operating temperature of the line. With the improvement of the accuracy of the future line current prediction method, the accuracy of the dynamic capacity increase risk assessment model proposed in this paper will also be improved, and the economic efficiency of the line operation can be brought into full play.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM75
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張勇;;架空輸電線路運(yùn)行維護(hù)中存在的問題及對(duì)策[J];科技創(chuàng)新與應(yīng)用;2014年02期
2 李勇;;電力架空輸電線路運(yùn)行維護(hù)[J];廣東科技;2014年14期
3 B.H.奧索托夫;楊德安;;架空輸電線路的綜合調(diào)查經(jīng)驗(yàn)[J];水電科技進(jìn)展;2003年02期
4 朱寬軍;付東杰;王景朝;孫娜;;架空輸電線路的舞動(dòng)及其防治[J];電力設(shè)備;2008年06期
5 梅超美;蒲路;王雪松;鄭小川;;架空輸電線路鳥害防治技術(shù)分析[J];陜西電力;2008年08期
6 黃國(guó)良;;論“空中留線法”在高壓架空輸電線路施工中的優(yōu)越性[J];科技創(chuàng)新導(dǎo)報(bào);2009年24期
7 李順利;;架空輸電線路運(yùn)行維護(hù)中存在的問題及對(duì)策[J];中國(guó)電力教育;2010年S1期
8 周傳讓;宋鋼;阮源源;;同塔多回高壓架空輸電線路的設(shè)計(jì)原則及其經(jīng)濟(jì)分析[J];能源技術(shù)經(jīng)濟(jì);2010年05期
9 李瀚儒;吳迪;;高壓架空輸電線路征地、青苗賠償工作分析及建議[J];科技信息;2010年25期
10 張杰;;架空輸電線路增容方法研究[J];云南電力技術(shù);2010年05期
相關(guān)會(huì)議論文 前10條
1 李少龍;張孝祖;胡昌斌;;架空輸電線路異物清除器[A];2011年云南電力技術(shù)論壇論文集(入選部分)[C];2011年
2 朱寬軍;張國(guó)威;付東杰;王景朝;;中國(guó)架空輸電線路舞動(dòng)防治技術(shù)[A];中國(guó)科學(xué)技術(shù)協(xié)會(huì)2008防災(zāi)減災(zāi)論壇論文集[C];2008年
3 韓軍;寶柱;;架空輸電線路保護(hù)區(qū)內(nèi)安全隱患治理辦法的探討與分析[A];培養(yǎng)創(chuàng)新型人才、推進(jìn)科技創(chuàng)新、推動(dòng)轉(zhuǎn)變經(jīng)濟(jì)發(fā)展方式——內(nèi)蒙古自治區(qū)第六屆自然科學(xué)學(xué)術(shù)年會(huì)優(yōu)秀論文集[C];2011年
4 黃宵寧;張真良;;架空輸電線路施工課程多媒體教學(xué)的探索與實(shí)踐[A];第二屆全國(guó)高校電氣工程及其自動(dòng)化專業(yè)教學(xué)改革研討會(huì)論文集(上冊(cè))[C];2004年
5 張?zhí)K;;架空輸電線路山火跳閘原因分析及對(duì)策[A];2010年云南電力技術(shù)論壇論文集(文摘部分)[C];2010年
6 李淑東;向玲;崔偉;;基于有限元模型的架空輸電線路振動(dòng)特性分析[A];第十四屆全國(guó)非線性振動(dòng)暨第十一屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議摘要集與會(huì)議議程[C];2013年
7 尹廣力;;架空輸電線路的運(yùn)行維護(hù)及防雷措施[A];第四屆全國(guó)架空輸電線路技術(shù)交流研討會(huì)論文集[C];2013年
8 鄭維權(quán);;架空輸電線路高塔跨越森林的應(yīng)用及推廣[A];2010年云南電力技術(shù)論壇論文集(優(yōu)秀論文部分)[C];2010年
9 朱寬軍;王景朝;程永鋒;劉彬;;架空輸電線路舞動(dòng)及其防治技術(shù)研究[A];第十四屆全國(guó)非線性振動(dòng)暨第十一屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議摘要集與會(huì)議議程[C];2013年
10 袁齊坤;鄧中原;;架空輸電線路絕緣子掉串故障研究[A];2011年云南電力技術(shù)論壇論文集(入選部分)[C];2011年
相關(guān)重要報(bào)紙文章 前7條
1 段錕 田江波;創(chuàng)新架空輸電線路狀態(tài)巡視管理模式[N];國(guó)家電網(wǎng)報(bào);2012年
2 徐搏 黃建威 記者 張茁;化解城市“空間之爭(zhēng)”[N];吉林日?qǐng)?bào);2011年
3 張明明 記者 寇勇;架空輸電線路在線監(jiān)測(cè)新技術(shù)問世[N];科技日?qǐng)?bào);2012年
4 記者 魏東 通訊員 張勁;我機(jī)器人可為架空輸電線路除冰檢測(cè)[N];科技日?qǐng)?bào);2010年
5 本報(bào)記者 韓萬(wàn)寧;G特變簽下3.4億美元輸變電合同[N];中國(guó)證券報(bào);2006年
6 蘇凱 國(guó)家電網(wǎng)公司法律部 趙建奇;架空輸電線路該不該給“四項(xiàng)補(bǔ)償費(fèi)”[N];中國(guó)電力報(bào);2003年
7 周靜;直擊涼山雷擊事件[N];涼山日?qǐng)?bào)(漢);2007年
相關(guān)博士學(xué)位論文 前1條
1 張建強(qiáng);采空區(qū)架空輸電線路安全性評(píng)估及預(yù)防技術(shù)研究[D];華北電力大學(xué)(北京);2008年
相關(guān)碩士學(xué)位論文 前10條
1 白杰;高壓架空輸電線路舞動(dòng)監(jiān)測(cè)系統(tǒng)設(shè)計(jì)[D];西南交通大學(xué);2015年
2 馬瑋杰;架空輸電線路安全運(yùn)行維護(hù)系統(tǒng)研究[D];山東大學(xué);2015年
3 白娟;基于激光掃描數(shù)據(jù)的架空輸電線路周邊物體對(duì)線路的安全影響研究[D];華北電力大學(xué);2015年
4 莫國(guó)華;架空輸電線路接地線管理系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2015年
5 李述文;惡劣氣象災(zāi)害下架空輸電線路運(yùn)行風(fēng)險(xiǎn)評(píng)估研究[D];華南理工大學(xué);2015年
6 楊寧;架空輸電線路導(dǎo)線舞動(dòng)機(jī)理及防舞對(duì)策研究[D];山東大學(xué);2015年
7 袁博;淄博地區(qū)架空輸電線路防雷技術(shù)措施分析與應(yīng)用[D];山東理工大學(xué);2015年
8 李海軍;架空輸電線路在線監(jiān)測(cè)系統(tǒng)研究與設(shè)計(jì)[D];西華大學(xué);2015年
9 王旭東;架空輸電線路在線監(jiān)測(cè)裝置光纖供電系統(tǒng)設(shè)計(jì)[D];太原理工大學(xué);2016年
10 郭方圓;架空輸電線路工程施工安全風(fēng)險(xiǎn)預(yù)警研究[D];華北電力大學(xué)(北京);2016年
,本文編號(hào):2129873
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2129873.html