基于大功率LED散熱的陶瓷覆銅板研究
發(fā)布時(shí)間:2018-07-04 22:57
本文選題:LED封裝基板 + 氧化鋁陶瓷。 參考:《浙江大學(xué)》2017年碩士論文
【摘要】:大功率LED是目前世界上大力發(fā)展的一項(xiàng)新的綠色照明技術(shù),根據(jù)《2017全球藍(lán)寶石與LED芯片市場(chǎng)報(bào)告》指出,2016年全球LED芯片市場(chǎng)規(guī)模已經(jīng)超過了 447億人民幣。然而,隨著LED的不斷大功率化,其散熱問題成為了困擾整個(gè)行業(yè)的重大問題,阻礙了 LED照明技術(shù)的發(fā)展腳步。目前,解決其散熱問題的很大一個(gè)方面就是尋找合適的材料作為散熱基板。氧化鋁陶瓷是目前使用最廣泛的陶瓷基板材料,同時(shí)氮化鋁陶瓷有著超高的熱導(dǎo)率、低介電常數(shù)、優(yōu)秀的化學(xué)性能等優(yōu)勢(shì),有望在將來成為主流的基板材料。本課題的主要目標(biāo)是在現(xiàn)有的磁控濺射金屬化方式基礎(chǔ)上,提出新的工藝思路,為氧化鋁陶瓷尋找了一種新的金屬化工藝,同時(shí)對(duì)氮化鋁陶瓷的金屬化工藝技術(shù)進(jìn)行了研究和探討。本課題取得了以下成果:(1)理論上分析了大功率LED的結(jié)構(gòu)特征與散熱通道,并對(duì)LED建立了散熱模型,同時(shí)使用大型有限元分析軟件ANSYS進(jìn)行了熱學(xué)穩(wěn)態(tài)仿真。從理論上論證了氮化鋁陶瓷基板相對(duì)于氧化鋁陶瓷基板、環(huán)氧樹脂基板有著非常明顯的散熱優(yōu)勢(shì),同時(shí)氧化鋁陶瓷基板在中小功率的LED下也具有著一定的使用價(jià)值。(2)提出了一種制備氧化鋁陶瓷覆銅板的新工藝:先低氣壓高能量的濺射沉積底銅層,再高氣壓濺射沉積加厚銅層。XPS等分析測(cè)試表明,初始沉積的底銅層與陶瓷界面存在明顯的電子交換,形成了一層氧化銅的過渡層,正是這層過渡層匹配了金屬與陶瓷,極大地提高了銅層與陶瓷的結(jié)合強(qiáng)度,同時(shí),高氣壓所沉積的銅層晶粒細(xì)小排列致密,電阻率低。測(cè)試結(jié)果顯示,該種工藝制備的氧化鋁陶瓷覆銅板,其熱阻為1.38℃/W,拉脫強(qiáng)度為6.2MPa,均優(yōu)于購買的直接覆銅陶瓷板的1.88℃/W和2.4MPa。光刻線條清晰,能兼容常規(guī)光刻工藝。這一工藝為陶瓷覆銅板的制備提出了一種新的方法,具有很大的使用價(jià)值和產(chǎn)業(yè)化前景。(3)氮化鋁陶瓷具有導(dǎo)熱系數(shù)高、化學(xué)穩(wěn)定性好等特出的優(yōu)點(diǎn),是未來高導(dǎo)熱陶瓷覆銅板理想的材料,但是其金屬化難題一直沒有解決,嚴(yán)重制約了它的應(yīng)用。本文系統(tǒng)地研究了氮化鋁陶瓷金屬化工藝,提出了一種采用激光活化表面再金屬化的新工藝并已經(jīng)成功了申請(qǐng)了相關(guān)專利。測(cè)試結(jié)果,該種工藝下的氧化鋁陶瓷覆銅板,其熱阻僅為0.25℃/W,銅層的拉脫強(qiáng)度為4.2MPa,并且能夠采用常規(guī)光刻工藝而不需要進(jìn)行二次光刻制備微細(xì)線條,這為氮化鋁陶瓷覆銅板在高導(dǎo)熱領(lǐng)域的全面推廣應(yīng)用打下了良好的基礎(chǔ)。
[Abstract]:High-power LED is a new green lighting technology in the world. According to < 2017 Global Sapphire and LED Chip Market report, the scale of global LED chip market has exceeded 44.7 billion RMB in 2016. However, with the continuous high power of LED, its heat dissipation has become a major problem that puzzles the whole industry, which hinders the development of LED lighting technology. At present, one of the most important aspects to solve the heat dissipation problem is to find suitable materials as the heat dissipation substrate. Alumina ceramic is the most widely used ceramic substrate material at present. At the same time, aluminum nitride ceramic has the advantages of high thermal conductivity, low dielectric constant and excellent chemical properties, which is expected to become the mainstream substrate material in the future. On the basis of the existing metallization mode of magnetron sputtering, the main goal of this project is to put forward a new technological idea to find a new metallization process for alumina ceramics. At the same time, the metallization technology of aluminum nitride ceramics was studied and discussed. The main achievements of this paper are as follows: (1) the structure characteristics and heat dissipation channel of high-power LED are analyzed theoretically, and the heat dissipation model of LED is established. At the same time, the thermal steady-state simulation is carried out by using the large-scale finite element analysis software ANSYS. It is theoretically demonstrated that aluminum nitride ceramic substrates have obvious heat dissipation advantages over alumina ceramic substrates. At the same time, the alumina ceramic substrate also has certain use value under the medium and small power LED. (2) A new process of preparing the alumina ceramic clad plate is proposed. The analysis and measurement of thickened copper layer. XPS show that there is obvious electron exchange between the initial deposited bottom copper layer and the ceramic interface, which forms a transition layer of copper oxide, which matches metal and ceramics. The bonding strength between the copper layer and the ceramics is greatly improved. At the same time, the grain size of the copper layer deposited by high pressure is fine and compact, and the resistivity is low. The test results show that the thermal resistance and the pull-out strength of the alumina ceramic clad plate prepared by this process are 1.38 鈩,
本文編號(hào):2097809
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2097809.html
最近更新
教材專著