旋轉(zhuǎn)磁化下磁致伸縮特性研究
本文選題:主應(yīng)變 + 磁致伸縮模型; 參考:《沈陽(yáng)工業(yè)大學(xué)》2017年碩士論文
【摘要】:電工鋼片的磁致伸縮被廣泛認(rèn)為是引起電氣設(shè)備振動(dòng)的主要來(lái)源之一,其特性與磁化方式、磁化頻率、應(yīng)力等因素密切有關(guān),準(zhǔn)確測(cè)量、模擬電工鋼片的磁致伸縮特性對(duì)電機(jī)、變壓器等電工設(shè)備的振動(dòng)噪聲研究具有重要意義。電機(jī)鐵心及三相變壓器鐵心T型結(jié)合部存在大量旋轉(zhuǎn)磁通,國(guó)外對(duì)旋轉(zhuǎn)磁化下電工鋼片磁致伸縮特性的測(cè)量與模擬研究仍處于起步階段,而國(guó)內(nèi)還未見(jiàn)報(bào)道。本文基于實(shí)驗(yàn)室研發(fā)的旋轉(zhuǎn)磁化電工鋼片磁致伸縮特性測(cè)量系統(tǒng),測(cè)量并分析了不同磁化軌跡下單片電工鋼片的磁致伸縮特性,提出了描述旋轉(zhuǎn)磁致伸縮特性的動(dòng)態(tài)矢量模型,并推導(dǎo)了模型參數(shù)計(jì)算方法。通過(guò)實(shí)驗(yàn)驗(yàn)證了模型的有效性,定量地分析了一臺(tái)同步發(fā)電機(jī)定子鐵心磁致伸縮及其引起的局部形變,為準(zhǔn)確計(jì)算電機(jī)鐵心振動(dòng)噪聲打下基礎(chǔ)。主要研究?jī)?nèi)容有:首先,改進(jìn)了實(shí)驗(yàn)室自行研制的旋轉(zhuǎn)磁化下磁致伸縮特性測(cè)量系統(tǒng)。為提高測(cè)量精度,將原系統(tǒng)中應(yīng)變片的粘貼位置移動(dòng)到樣片的中心區(qū)域,并測(cè)量了不同旋轉(zhuǎn)磁化軌跡下磁致伸縮數(shù)據(jù)。然后,分析了不同磁化條件下,不同時(shí)刻沿任意方向上的應(yīng)變分布、主應(yīng)變和主應(yīng)變角在一個(gè)磁化周期內(nèi)的變化波形和主應(yīng)變峰值變化規(guī)律;討論了主應(yīng)變波形的諧波含量及主應(yīng)變和磁通密度之間的矢量和磁滯特性。再次,提出了描述磁致伸縮主應(yīng)變與磁通密度矢量關(guān)系的動(dòng)態(tài)矢量模型。將磁致伸縮主應(yīng)變沿水平和垂直兩個(gè)方向的分量表達(dá)為三項(xiàng)之和,即一個(gè)與磁化軌跡有關(guān)的常數(shù)項(xiàng)、磁通密度隨時(shí)間變化項(xiàng)及磁通密度對(duì)時(shí)間的導(dǎo)數(shù)項(xiàng)。詳細(xì)推導(dǎo)了模型中參數(shù)的數(shù)學(xué)表達(dá)式,基于測(cè)量數(shù)據(jù)計(jì)算了模型參數(shù),建立了模型參數(shù)數(shù)據(jù)庫(kù)。并驗(yàn)證了模型的有效性。最后,基于磁致伸縮模型對(duì)一臺(tái)同步發(fā)電機(jī)的磁致伸縮形變進(jìn)行建模仿真。在一個(gè)周期內(nèi),對(duì)定子鐵心單元離散時(shí)刻的磁場(chǎng)數(shù)據(jù)采集并輸出;基于模型參數(shù)數(shù)據(jù)庫(kù)插值計(jì)算得到每個(gè)單元的模型參數(shù);最后計(jì)算出每個(gè)單元的磁致伸縮數(shù)據(jù),得到了電機(jī)鐵心主應(yīng)變的分布,及其引起的局部形變。
[Abstract]:The magnetostriction of electrical steel sheet is widely regarded as one of the main sources of electrical equipment vibration. Its characteristics are closely related to the factors such as magnetization mode, magnetization frequency, stress and so on. It is of great significance to study the vibration and noise of electrical equipment such as transformer. There is a large number of rotating flux in the T-type junction of the core of motor and three-phase transformer. The measurement and simulation of magnetostrictive characteristics of electrical steel sheet under rotating magnetization are still in the initial stage in foreign countries, but no reports have been reported in China. Based on the magnetostrictive characteristic measurement system developed by the laboratory, the magnetostrictive characteristics of electric steel sheet with different magnetization trajectories are measured and analyzed, and a dynamic vector model is proposed to describe the magnetostrictive characteristics of rotating magnetostrictive steel sheet. The calculation method of model parameters is deduced. The validity of the model is verified by experiments. The magnetostriction of stator core and the local deformation caused by the magnetostriction of a synchronous generator are quantitatively analyzed, which lays a foundation for the accurate calculation of the vibration and noise of the motor core. The main research contents are as follows: firstly, the measurement system of magnetostriction under rotating magnetization developed by the laboratory is improved. In order to improve the measurement accuracy, the sticking position of the strain gauge in the original system was moved to the center of the sample, and the magnetostrictive data were measured under different rotating magnetization trajectories. Then, the variation waveform and peak value of principal strain and principal strain angle in a magnetization period under different magnetization conditions are analyzed. The harmonic content of the principal strain waveform and the vector and hysteresis characteristics between the principal strain and flux density are discussed. Thirdly, a dynamic vector model is proposed to describe the relationship between magnetostrictive principal strain and flux density vector. The components of magnetostrictive principal strain along horizontal and vertical directions are expressed as the sum of three terms, that is, a constant term related to the magnetization trajectory, the flux density variation term with time and the derivative term of flux density to time. The mathematical expressions of the parameters in the model are derived in detail. The model parameters are calculated based on the measurement data and the database of the model parameters is established. The validity of the model is verified. Finally, the magnetostrictive deformation of a synchronous generator is modeled and simulated based on the magnetostrictive model. In a period, the magnetic field data of stator core unit at discrete time are collected and output; the model parameters of each unit are calculated by interpolation based on the model parameter database; finally, the magnetostrictive data of each unit are calculated. The distribution of the principal strain of the motor core and the local deformation caused by it are obtained.
【學(xué)位授予單位】:沈陽(yáng)工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM275
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張黎;王國(guó)政;董攀婷;鄒亮;趙彤;;基于磁致伸縮本征特性的晶粒取向性變壓器鐵心振動(dòng)模型[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年14期
2 吳勝男;唐任遠(yuǎn);韓雪巖;佟文明;舒圣浪;陳健;;磁致伸縮引起的非晶合金永磁電機(jī)振動(dòng)解析計(jì)算[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年13期
3 張艷麗;王佳音;白保東;謝德馨;;直流偏磁磁場(chǎng)對(duì)硅鋼片磁致伸縮特性的影響分析[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年15期
4 張艷麗;王洋洋;張殿海;任自艷;謝德馨;白保東;夏加寬;;交變磁化下電工鋼片的矢量磁致伸縮特性[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年04期
5 張艷麗;李強(qiáng);王洋洋;張殿海;任自艷;白保東;謝德馨;;諧波磁場(chǎng)下硅鋼片磁致伸縮特性分析[J];電工技術(shù)學(xué)報(bào);2015年14期
6 韓雪巖;張哲;吳勝男;陳健;;考慮磁致伸縮效應(yīng)永磁電機(jī)的振動(dòng)噪聲研究[J];電工電能新技術(shù);2015年01期
7 張艷麗;孫小光;謝德馨;白保東;張殿海;任自艷;;無(wú)取向硅鋼片各向異性磁致伸縮特性模擬[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年27期
8 張艷麗;孫小光;白保東;謝德馨;任自艷;張殿海;;晶粒無(wú)取向硅鋼片取向特性分析[J];電工技術(shù)學(xué)報(bào);2013年S2期
9 徐浩銘;郭琳;王志華;;交變磁場(chǎng)下硅鋼片磁致伸縮振動(dòng)及抑制的研究[J];楊凌職業(yè)技術(shù)學(xué)院學(xué)報(bào);2013年04期
10 郝清亮;胡義軍;朱少林;;磁致伸縮在電機(jī)電磁振動(dòng)中的貢獻(xiàn)分析[J];電機(jī)與控制應(yīng)用;2011年10期
,本文編號(hào):2094571
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2094571.html