FA和PSO算法比較研究及其在協(xié)調(diào)優(yōu)化中的應用
本文選題:超臨界機組 + 協(xié)調(diào)控制系統(tǒng) ; 參考:《華北電力大學》2017年碩士論文
【摘要】:超臨界機組因其具有節(jié)能、高效等優(yōu)點,現(xiàn)已成為我國電網(wǎng)的主力機組,其最主要的任務是滿足電網(wǎng)負荷需求,接受自動發(fā)電控制(AGC)參與電網(wǎng)的調(diào)峰和調(diào)頻。因為超臨界機組為多輸入多輸出的非線性、強耦合的被控對象,傳統(tǒng)的PID控制,已經(jīng)無法達到機組深度調(diào)峰的要求,使機組在大幅度變工況運行時的控制效果變差,因此引入先進的智能控制策略來提高機組的控制品質(zhì)十分必要。本文主要對新型的螢火蟲算法(FA)進行研究和改進,并與成熟的粒子群算法性能進行比較,并將FA算法與神經(jīng)網(wǎng)絡建模結(jié)合應用于超臨界機組的協(xié)調(diào)預測優(yōu)化控制,選題具有理論和應用兩個方面的重要意義。本文針對某600MW超臨界機組,詳細分析了其協(xié)調(diào)系統(tǒng)的各種特性以及控制方式和控制邏輯。在研究神經(jīng)網(wǎng)絡的原理以及非線性系統(tǒng)建模方法、對FA算法及PSO算法性能比較研究的基礎上,提出了一種基于BP神經(jīng)網(wǎng)絡建模和基于混沌序列螢火蟲算法(CSFA)的模型預測優(yōu)化控制(MPOC)方法,并應用于超臨界機組協(xié)調(diào)控制。本文采用MATLAB軟件平臺建立了協(xié)調(diào)預測優(yōu)化控制算法,通過與超臨界機組全范圍仿真系統(tǒng)進行雙向?qū)崟r通訊,對600MW超臨界機組進行實時優(yōu)化控制,開展詳細的協(xié)調(diào)優(yōu)化控制仿真試驗。結(jié)果表明:本文提出的方法能夠有效地提高機組對負荷指令的響應速度和調(diào)節(jié)精度,大大減小了主蒸汽壓力的控制偏差,使其能夠在控制要求內(nèi),保證機組的運行安全和經(jīng)濟效益,具有較好的工程實用性。
[Abstract]:Because of its advantages of energy saving and high efficiency, supercritical unit has become the main power unit in our country. Its main task is to meet the demand of power grid load and to accept automatic generation control (AGC) to participate in peak shaving and frequency modulation. Because the supercritical unit is a nonlinear, strong coupling controlled object with multiple inputs and outputs, the traditional pid control can no longer meet the requirements of the unit's deep peak-shaving, which makes the control effect of the unit worse when the unit is running in a large range of variable operating conditions. Therefore, it is necessary to introduce advanced intelligent control strategy to improve the control quality of the unit. In this paper, a new type of firefly algorithm (FA) is studied and improved, and its performance is compared with the mature particle swarm optimization algorithm (PSO). The FA algorithm and neural network modeling are applied to the coordinated predictive optimization control of supercritical units. The selection of topics is of great significance in both theory and application. In this paper, for a 600MW supercritical unit, the characteristics, control mode and control logic of the coordination system are analyzed in detail. On the basis of studying the principle of neural network and the modeling method of nonlinear system, the performance of FA algorithm and PSO algorithm are compared. A model predictive optimization control (MPOC) method based on BP neural network modeling and chaotic sequence firefly algorithm (CSFA) is proposed and applied to supercritical unit coordination control. In this paper, a coordinated predictive optimal control algorithm is established by using MATLAB software platform. Through two-way real-time communication with the full-range simulation system of supercritical unit, the real-time optimal control of 600MW supercritical unit is carried out. Carry out detailed simulation test of coordinated optimal control. The results show that the proposed method can effectively improve the response speed and adjustment accuracy of the unit to the load command, greatly reduce the control deviation of the main steam pressure, and enable it to meet the control requirements. It has good engineering practicability to ensure the operation safety and economic benefit of the unit.
【學位授予單位】:華北電力大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP18;TM621
【參考文獻】
相關期刊論文 前10條
1 王銘波;符強;童楠;劉政;趙一鳴;;基于模擬退火機制的多種群螢火蟲算法[J];計算機應用;2015年03期
2 鄭楠;王翔;于浩杰;顏敏;;一種改進混沌螢火蟲算法[J];計算機仿真;2014年10期
3 馬良玉;高志元;;超臨界機組協(xié)調(diào)控制系統(tǒng)的預測優(yōu)化控制[J];熱力發(fā)電;2014年09期
4 王吉權;王福林;;螢火蟲算法的改進分析及應用[J];計算機應用;2014年09期
5 王翔;于浩杰;顏敏;鄭楠;;一種新穎的改進螢火蟲算法[J];計算機與應用化學;2014年08期
6 徐華麗;蘇守寶;陳家俊;牛應軒;;變尺度混沌光強吸收系數(shù)的螢火蟲優(yōu)化算法[J];計算機應用研究;2015年02期
7 袁鋒;陳守強;劉弘;鐘安帥;;一種改進的文化螢火蟲算法[J];計算機仿真;2014年06期
8 陳愷;陳芳;戴敏;張志勝;史金飛;;基于螢火蟲算法的二維熵多閾值快速圖像分割[J];光學精密工程;2014年02期
9 曾冰;李明富;張翼;馬建華;;基于螢火蟲算法的裝配序列規(guī)劃研究[J];機械工程學報;2013年11期
10 吳東周;丁學明;;基于改進螢火蟲算法的T-S模型辨識[J];計算機仿真;2013年03期
相關碩士學位論文 前6條
1 高志元;基于神經(jīng)網(wǎng)絡的超臨界機組建模及協(xié)調(diào)預測優(yōu)化控制[D];華北電力大學;2014年
2 高偉明;螢火蟲算法的研究與應用[D];蘭州大學;2013年
3 李洋;蛙跳螢火蟲算法及其在含風電場的電力系統(tǒng)調(diào)度中的應用[D];華東理工大學;2013年
4 蔚培霞;超臨界單元機組協(xié)調(diào)控制系統(tǒng)的分析和研究[D];華北電力大學(河北);2009年
5 黃麗;BP神經(jīng)網(wǎng)絡算法改進及應用研究[D];重慶師范大學;2008年
6 吳昌友;神經(jīng)網(wǎng)絡的研究及應用[D];東北農(nóng)業(yè)大學;2007年
,本文編號:2089981
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2089981.html