計(jì)及頻率偏移的相量測(cè)量算法及諧波測(cè)量應(yīng)用
本文選題:頻率偏移 + 泰勒估計(jì)。 參考:《西南交通大學(xué)》2017年碩士論文
【摘要】:廣域測(cè)量系統(tǒng)的出現(xiàn)使同步相量測(cè)量單元廣泛應(yīng)用于電力系統(tǒng)的數(shù)據(jù)采集、狀態(tài)監(jiān)測(cè)等應(yīng)用中。現(xiàn)有的商用同步相量測(cè)量算法在靜態(tài)條件下具有較好的測(cè)量效果,但系統(tǒng)受到擾動(dòng)時(shí),電壓/電流信號(hào)的頻率和幅值無法維持一常數(shù),靜態(tài)算法已無法提供有效的測(cè)量精度。尤其當(dāng)信號(hào)的頻率發(fā)生較大偏移的情況下,動(dòng)態(tài)同步相量測(cè)量算法面臨更嚴(yán)峻的測(cè)量條件。因此,本論文著重研究了考慮頻率偏移的動(dòng)態(tài)同步相量測(cè)量算法,并研究了算法諧波相量測(cè)量中的應(yīng)用。針對(duì)測(cè)量精度較高的應(yīng)用,將頻率偏移因素考慮進(jìn)基于時(shí)域模型的基波相量建模中。首先,考慮頻率偏移量,建立更接近真實(shí)頻率的基波相量模型并通過短時(shí)傅里葉變換得到預(yù)估相量值,通過時(shí)移操作,得到相鄰數(shù)據(jù)窗下的相量預(yù)估值;其次,根據(jù)頻率與相角的關(guān)系,計(jì)算出偏移基準(zhǔn)頻率的頻率偏移量;然后,根據(jù)頻率偏移量,從表中選擇對(duì)應(yīng)的離線矩陣;最后,通過相移運(yùn)算得到報(bào)告時(shí)刻的相量值及其準(zhǔn)確頻率。通過MATLAB的理想信號(hào)、PDCAD/EMTDC的動(dòng)態(tài)信號(hào)、實(shí)測(cè)信號(hào)等的驗(yàn)證,與其他動(dòng)態(tài)相量測(cè)量算法比較,證明了基于時(shí)域模型的動(dòng)態(tài)同步相量估計(jì)算法的正確性和有效性。針對(duì)響應(yīng)速度較快的應(yīng)用,將頻率偏移因素考慮進(jìn)基于頻模型的基波相量建模中。首先,考慮頻率偏移量,建立更接近真實(shí)頻率的基波相量模型并通過短時(shí)傅里葉變換得到預(yù)估相量值,并得到頻域下的多個(gè)相量預(yù)估值;其次,根據(jù)頻率與相角的關(guān)系,計(jì)算出偏移基準(zhǔn)頻率的頻率偏移量;然后,根據(jù)頻率偏移量,從表中選擇對(duì)應(yīng)的離線矩陣;最后,通過相移運(yùn)算得到報(bào)告時(shí)刻的相量值及其準(zhǔn)確頻率。通過MATLAB的理想信號(hào)、PDCAD/EMTDC的動(dòng)態(tài)信號(hào)、實(shí)測(cè)信號(hào)等的驗(yàn)證,與其他動(dòng)態(tài)相量測(cè)量算法比較,證明了基于頻域模型的動(dòng)態(tài)同步相量估計(jì)算法的正確性和有效性?紤]信號(hào)的動(dòng)態(tài)特性,建立基于泰勒級(jí)數(shù)的諧波相量模型;考慮頻率偏移對(duì)泰勒估計(jì)精度的影響,提出計(jì)及頻率偏移的動(dòng)態(tài)諧波相量測(cè)量算法。首先,建立基于泰勒級(jí)數(shù)的諧波相量模型;其次,通過動(dòng)態(tài)相量測(cè)量來準(zhǔn)確獲取基波相量的頻率信息;再根據(jù)基波頻率偏移量計(jì)算得到各次諧波的頻率偏移量;最后據(jù)此查表獲得各次諧波的系數(shù)修正矩陣,并修正離散傅里葉變換的初始估計(jì)值來獲得諧波相量的精確估計(jì)。通過理想信號(hào)及實(shí)測(cè)數(shù)據(jù),與傳統(tǒng)傅立葉算法、加窗插值算法對(duì)比,驗(yàn)證了計(jì)及頻率偏移的動(dòng)態(tài)諧波相量測(cè)量算法的有效性和實(shí)用性。論文所做的理論研究和仿真結(jié)果表明:將頻率偏移因素考慮到基波和諧波相量的建模中是合理的,得到的結(jié)果更貼合信號(hào)的實(shí)際值,能為未來同步相量測(cè)量技術(shù)提供重要的理論依據(jù)。
[Abstract]:The appearance of wide area measurement system makes synchronous phasor measurement unit widely used in power system data acquisition, state monitoring and other applications. The existing commercial synchronized phasor measurement algorithms have good measurement effect under static condition, but when the system is disturbed, the frequency and amplitude of the voltage / current signal can not maintain a constant, and the static algorithm can not provide effective measurement accuracy. Especially when the frequency of signal deviates greatly, the dynamic synchronous phasor measurement algorithm is faced with more severe measurement conditions. Therefore, this paper focuses on the dynamic synchronized phasor measurement algorithm considering frequency offset, and the application of the algorithm in harmonic phasor measurement. For the application of high measurement precision, the frequency migration factor is considered in the fundamental phasor modeling based on time domain model. Firstly, considering the frequency offset, the fundamental phasor model which is closer to the real frequency is established, and the predicted phase value is obtained by short-time Fourier transform, and the pre-estimated phasor under the adjacent data window is obtained by time-shift operation. According to the relationship between the frequency and the phase angle, the frequency offset of the offset reference frequency is calculated. Then, according to the frequency offset, the corresponding off-line matrix is selected from the table. Finally, the phase value of the reporting time and its exact frequency are obtained by phase shift operation. Compared with other dynamic phasor measurement algorithms, the validity and validity of the dynamic synchronous phasor estimation algorithm based on time-domain model is proved by the verification of the dynamic signal of PDCAD / EMTDC and the measured signal in MATLAB. For the application of high response speed, the frequency migration factor is taken into account in the fundamental phasor modeling based on the frequency model. First of all, considering the frequency offset, the fundamental phasor model which is closer to the real frequency is established, and the predicted phasor value is obtained by short-time Fourier transform, and several phasor preestimates in frequency domain are obtained. Secondly, according to the relationship between frequency and phase angle, The frequency offset of the offset reference frequency is calculated. Then, according to the frequency offset, the corresponding off-line matrix is selected from the table. Finally, the phase value of the reporting time and its exact frequency are obtained by phase shift operation. Compared with other dynamic phasor measurement algorithms, the validity and validity of the dynamic synchronous phasor estimation algorithm based on the frequency domain model is proved by the verification of the dynamic signal of PDCAD / EMTDC and the measured signal of the ideal signal of MATLAB, and compared with other dynamic phasor measurement algorithms. Considering the dynamic characteristics of the signal, the harmonic phasor model based on Taylor series is established, and considering the influence of frequency offset on Taylor estimation accuracy, a dynamic harmonic phasor measurement algorithm considering frequency offset is proposed. Firstly, the harmonic phasor model based on Taylor series is established; secondly, the frequency information of fundamental phasor is accurately obtained by dynamic phasor measurement, and the frequency offset of each harmonic is calculated according to the fundamental frequency offset. Finally, the coefficient correction matrix of each order harmonic is obtained by looking up the table, and the initial estimation value of discrete Fourier transform is revised to obtain the accurate estimation of harmonic phasor. Compared with the traditional Fourier algorithm and the windowed interpolation algorithm, the validity and practicability of the dynamic harmonic phasor measurement algorithm with frequency offset are verified by the ideal signal and measured data. The theoretical research and simulation results show that it is reasonable to take the frequency offset factor into account in the fundamental and harmonic phasor modeling, and the results are more suitable for the actual value of the signal. It can provide important theoretical basis for the future synchronized phasor measurement technology.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM935
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃大足,劉湘濤;載波頻率偏移對(duì)正交頻分多路系統(tǒng)性能的影響[J];船電技術(shù);2004年04期
2 肖龍;楊國(guó)華;鮑麗芳;智騰飛;韓世軍;王金梅;;基于改進(jìn)滑模頻率偏移法的光伏孤島檢測(cè)研究[J];電測(cè)與儀表;2012年06期
3 李梅;丁濤;顧偉;萬秋蘭;;頻率偏移情況下的同步相量修正[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年04期
4 翟登輝;徐軍;沈定坤;王志鵬;;一種優(yōu)化的基于頻率偏移的孤島檢測(cè)新方法[J];電力電子技術(shù);2013年04期
5 劉益青;袁文廣;;一種用于頻率偏移時(shí)有效值計(jì)算的修正方法[J];電力系統(tǒng)自動(dòng)化;2008年02期
6 劉芙蓉;王輝;康勇;段善旭;;滑動(dòng)頻率偏移法在戶用光伏孤島檢測(cè)中的應(yīng)用[J];電源世界;2008年08期
7 劉芙蓉;王輝;康勇;段善旭;;滑模頻率偏移法的孤島檢測(cè)盲區(qū)分析[J];電工技術(shù)學(xué)報(bào);2009年02期
8 朱彤,桑恩方;基于正交頻分復(fù)用的水聲通信中克服頻率偏移影響的方法[J];應(yīng)用聲學(xué);2005年02期
9 何軍;趙鋼;;改進(jìn)型主動(dòng)式頻率偏移孤島檢測(cè)算法分析[J];電測(cè)與儀表;2013年03期
10 張恒旭;劉玉田;薛禹勝;;考慮累積效應(yīng)的頻率偏移安全性量化評(píng)估[J];電力系統(tǒng)自動(dòng)化;2010年24期
相關(guān)會(huì)議論文 前6條
1 向志海;張堯;陸秋海;;基于附加質(zhì)量處頻率偏移曲線的結(jié)構(gòu)損傷檢測(cè)方法[A];力學(xué)與工程應(yīng)用[C];2012年
2 丁麗婭;侯春萍;王兆華;;基于APFFT的OFDM系統(tǒng)[A];中國(guó)電子學(xué)會(huì)第十五屆信息論學(xué)術(shù)年會(huì)暨第一屆全國(guó)網(wǎng)絡(luò)編碼學(xué)術(shù)年會(huì)論文集(下冊(cè))[C];2008年
3 王夢(mèng)麗;陳金平;;一種基于概略PVT信息的多普勒頻率偏移估計(jì)算法[A];第一屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)論文集(上)[C];2010年
4 秦升平;尹長(zhǎng)川;紀(jì)紅;樂光新;;OFDM系統(tǒng)中一種頻率偏移的盲估計(jì)算法[A];現(xiàn)代通信理論與信號(hào)處理進(jìn)展——2003年通信理論與信號(hào)處理年會(huì)論文集[C];2003年
5 隋天宇;李宇;袁兆凱;黃海寧;張春華;;OFDM系統(tǒng)中一種載波頻率偏移估計(jì)與補(bǔ)償方法研究[A];中國(guó)聲學(xué)學(xué)會(huì)2009年青年學(xué)術(shù)會(huì)議[CYCA’09]論文集[C];2009年
6 熊松;;OFDM系統(tǒng)中定時(shí)和頻率偏移ML估計(jì)[A];江蘇省通信學(xué)會(huì)2004年學(xué)術(shù)年會(huì)論文集[C];2004年
相關(guān)重要報(bào)紙文章 前1條
1 江蘇 戴春華;“軟硬兼施”消除PLL TUNEB中FM的CPU干擾[N];電子報(bào);2007年
相關(guān)碩士學(xué)位論文 前10條
1 張佳怡;計(jì)及頻率偏移的相量測(cè)量算法及諧波測(cè)量應(yīng)用[D];西南交通大學(xué);2017年
2 李濤;協(xié)作多點(diǎn)傳輸系統(tǒng)載波同步技術(shù)研究[D];電子科技大學(xué);2011年
3 許四強(qiáng);正交頻分復(fù)用系統(tǒng)頻率偏移估計(jì)的研究[D];太原理工大學(xué);2007年
4 王育兵;基于自適應(yīng)理論的OFDM系統(tǒng)頻率偏移估計(jì)方法研究[D];河南工業(yè)大學(xué);2010年
5 秦勉;多載波CDMA系統(tǒng)的殘留頻率偏移估計(jì)及補(bǔ)償方法研究[D];鄭州大學(xué);2007年
6 郭攀;OFDM系統(tǒng)的頻率偏移估計(jì)算法研究[D];東華大學(xué);2007年
7 鄒洪偉;OFDM系統(tǒng)中的載波頻率偏移估計(jì)算法研究[D];蘭州大學(xué);2012年
8 方芳;OFDM系統(tǒng)中載波頻率偏移和直流偏移估計(jì)算法的研究[D];蘭州大學(xué);2013年
9 周華杰;OFDM無線傳輸系統(tǒng)中的同步技術(shù)[D];西安電子科技大學(xué);2006年
10 劉平;OFDM系統(tǒng)的載頻和定時(shí)聯(lián)合同步研究[D];蘭州大學(xué);2006年
,本文編號(hào):2072929
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2072929.html