電池管理系統(tǒng)SOC估算及均衡技術(shù)研究
本文選題:電池管理系統(tǒng) + SOC估算; 參考:《中國礦業(yè)大學(xué)》2017年碩士論文
【摘要】:近年來,隨著能源結(jié)構(gòu)改變,國家大力發(fā)展電動(dòng)汽車,動(dòng)力電池作為電動(dòng)汽車能量核心,現(xiàn)已成為制約電動(dòng)汽車快速發(fā)展的瓶頸。優(yōu)秀電池管理系統(tǒng)(Battery Management System,BMS)能夠有效提高電池使用壽命、增加續(xù)航里程,給予使用者準(zhǔn)確電池運(yùn)行狀態(tài),包括電池荷電狀態(tài)(State of Charge,SOC),電池均衡狀態(tài)及基本電壓電流參數(shù)。本文以三元鋰電池作為研究對(duì)象,重點(diǎn)研究電池SOC估算優(yōu)化設(shè)計(jì)及基于SOC實(shí)現(xiàn)電池均衡。本文對(duì)常規(guī)二階RC等效電路進(jìn)行優(yōu)化設(shè)計(jì),增加RC環(huán)節(jié)建立電池三階RC等效電路模型,根據(jù)電池混合脈沖功率特性(Hybrid Pulse Power Characterization,HPPC)循環(huán)測試數(shù)據(jù),結(jié)合電池SOC-OCV曲線,進(jìn)行等效電路模型參數(shù)辨識(shí)。在MATLAB中分別搭建兩種等效電路模型,基于HPPC測試數(shù)據(jù),對(duì)兩種等效電路模擬電池外特性進(jìn)行仿真對(duì)比分析,仿真結(jié)果表明,三階RC等效電路能夠更加精確模擬電池外特性;谒⒌牡刃щ娐纺P,分析擴(kuò)展卡爾曼濾波算法(Extended Kalman Filter,EKF)估算SOC原理。針對(duì)算法中反饋電壓誤差較大的缺點(diǎn),引入模型修正因子優(yōu)化EKF算法,從而降低SOC估算誤差,最后采用HPPC測試數(shù)據(jù)對(duì)優(yōu)化前后SOC估算結(jié)果進(jìn)行仿真對(duì)比分析,仿真結(jié)果表明,優(yōu)化后算法能夠有效提高SOC估算準(zhǔn)確度。針對(duì)常規(guī)均衡電路均衡效率差、控制復(fù)雜等問題,本文給出級(jí)聯(lián)型均衡電路方案,該方案通過控制MOSFET開關(guān)狀態(tài)改變電池充放電時(shí)間,實(shí)現(xiàn)不同電量電池的電量均衡,同時(shí)具有切除故障電池的功能。根據(jù)電路均衡原理給出該電路的均衡控制策略,在MATLAB仿真環(huán)境中,搭建鋰電池均衡電路,以SOC一致性為控制目標(biāo),對(duì)電池組均衡及故障冗余進(jìn)行仿真測試。仿真結(jié)果表明,該均衡電路及其控制策略能夠有效實(shí)現(xiàn)電池SOC均衡控制,且電池出現(xiàn)故障時(shí)電池組仍可正常運(yùn)行。為驗(yàn)證所提出理論的正確性和可行性,設(shè)計(jì)并搭建BMS硬件實(shí)驗(yàn)平臺(tái)進(jìn)行實(shí)驗(yàn)分析。實(shí)驗(yàn)平臺(tái)采用飛思卡爾公司MC9S12XET256單片機(jī)做為主控芯片,TI公司BQ76PL536、LEM公司LA55-P電流傳感器分別用于電池電壓、電流采樣。為保證電池安全可靠運(yùn)行,分別設(shè)計(jì)MOSFET驅(qū)動(dòng)保護(hù)電路及互鎖保護(hù)電路;贚abVIEW編寫上位機(jī)軟件,實(shí)現(xiàn)電池運(yùn)行狀態(tài)實(shí)時(shí)監(jiān)控,并記錄、存儲(chǔ)電池組參數(shù)信息,便于后續(xù)處理分析;谒罱ǖ挠布䦟(shí)驗(yàn)平臺(tái)分別進(jìn)行SOC估算實(shí)驗(yàn)和電池均衡實(shí)驗(yàn)。首先對(duì)電池分別進(jìn)行DST和FUDS工況測試,同時(shí)估算電池SOC,對(duì)比電池容量儀測量結(jié)果和SOC估算曲線,驗(yàn)證所采用的優(yōu)化EKF算法的有效性和準(zhǔn)確性。以SOC一致性為控制目標(biāo),分別在放電、充電及故障狀態(tài)進(jìn)行電池均衡控制實(shí)驗(yàn),對(duì)比分析各電池均衡曲線可知,該均衡電路和均衡控制策略能夠有效實(shí)現(xiàn)電池SOC均衡及故障冗余功能。
[Abstract]:In recent years, with the change of energy structure, the country has made great efforts to develop electric vehicles. As the energy core of electric vehicles, power battery has become the bottleneck restricting the rapid development of electric vehicles. The Battery Management system (BMS) can effectively improve the battery life, increase the mileage of the battery, and give the user accurate battery running state, including the State of charge SOC (SOC), the battery equilibrium state and the basic voltage and current parameters. In this paper, ternary lithium battery is taken as the research object, and the optimization design of SOC estimation and the realization of battery equalization based on SOC are emphasized. In this paper, the conventional second-order RC equivalent circuit is optimized, and the third-order RC equivalent circuit model of battery is established by adding RC link. According to the cycle test data of Hybrid Pulse Power Characterization HPPC, the SOC-OCV curve is combined with the battery SOC-OCV curve. Parameter identification of equivalent circuit model is carried out. Two kinds of equivalent circuit models are built in MATLAB. Based on the HPPC test data, the simulation results show that the third-order RC equivalent circuit can simulate the external characteristics of the cell more accurately. Based on the established equivalent circuit model, the SOC estimation principle of extended Kalman filter (EKF) is analyzed. Aiming at the disadvantage of large feedback voltage error in the algorithm, the model correction factor is introduced to optimize the EKF algorithm to reduce the SOC estimation error. Finally, the SOC estimation results before and after optimization are compared and analyzed by HPPC test data. The optimized algorithm can effectively improve the accuracy of SOC estimation. Aiming at the problems of low equalization efficiency and complex control in conventional equalization circuit, a cascade equalization circuit scheme is presented in this paper. By controlling the switching state of MOSFET, the battery charge and discharge time can be changed to realize the battery power equalization with different quantities of electricity. At the same time, it has the function of removing faulty battery. According to the principle of circuit equalization, the equalization control strategy of the circuit is given. In MATLAB simulation environment, the equalization circuit of lithium battery is built, and the battery pack equalization and fault redundancy are simulated and tested with SOC consistency as the control target. The simulation results show that the equalization circuit and its control strategy can effectively realize the SOC equalization control of the battery, and the battery can still operate normally when the cell fails. In order to verify the correctness and feasibility of the proposed theory, a BMS hardware experimental platform is designed and built for experimental analysis. The experiment platform uses MC9S12XET256 single chip microcomputer of Freescale Company as the main control chip BQ76PL536LEM company LA55-P current sensor for battery voltage and current sampling respectively. In order to ensure the safe and reliable operation of the battery, the MOSFET drive protection circuit and the interlock protection circuit are designed respectively. Based on LabVIEW, the upper computer software is written to realize the real-time monitoring of the battery running state, and to record and store the parameter information of the battery pack, so as to facilitate the subsequent processing and analysis. Based on the hardware experiment platform, SOC estimation experiment and battery equalization experiment are carried out respectively. First, the battery was tested under DST and FUDS conditions, and the SOC of the battery was estimated at the same time. The validity and accuracy of the optimized EKF algorithm were verified by comparing the measured results of the battery capacity meter and the SOC estimation curve. Taking SOC consistency as the control target, the battery equalization control experiments are carried out in the discharge, charging and fault state respectively, and the comparison and analysis of each battery equalization curve can be seen. The equalization circuit and the equalization control strategy can effectively realize the battery SOC equalization and fault redundancy.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM912
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張宏偉;李建成;張兵兵;;基于安時(shí)積分和粒子濾波修正的鋰電池SOC估計(jì)[J];傳感器與微系統(tǒng);2016年10期
2 賈磊磊;張旭;;分布式電池管理系統(tǒng)的研究與開發(fā)[J];中國新技術(shù)新產(chǎn)品;2016年16期
3 陳息坤;孫冬;;鋰離子電池建模及其參數(shù)辨識(shí)方法研究[J];中國電機(jī)工程學(xué)報(bào);2016年22期
4 吳鐵洲;楊蒙蒙;吳笑民;許玉姍;;基于模糊控制的鋰離子電池變頻脈沖快速充電[J];電源技術(shù);2016年07期
5 張持健;陳航;;鋰電池SOC預(yù)測方法綜述[J];電源技術(shù);2016年06期
6 歐陽佳佳;毛良平;張軍明;;基于SOC-OCV曲線的卡爾曼濾波法SOC估計(jì)[J];電力電子技術(shù);2016年03期
7 王波;;鋰電池SOC估算方法的研究[J];電源技術(shù);2016年01期
8 呂航;劉承志;;電動(dòng)汽車磷酸鐵鋰電池組均衡電路設(shè)計(jì)[J];電源學(xué)報(bào);2016年01期
9 汪秋婷;戚偉;肖鐸;;基于SOC的鋰離子電池組主動(dòng)均衡系統(tǒng)設(shè)計(jì)[J];電子技術(shù)應(yīng)用;2015年07期
10 姬偉超;傅艷;羅欽;;三種常用動(dòng)力鋰電池模型分析與比較[J];農(nóng)業(yè)裝備與車輛工程;2015年05期
相關(guān)碩士學(xué)位論文 前10條
1 趙婷;動(dòng)力鋰離子電池組SOC在線估算[D];北京交通大學(xué);2016年
2 歐陽家俊;動(dòng)力磷酸鐵鋰電池均衡系統(tǒng)設(shè)計(jì)與研究[D];西南交通大學(xué);2015年
3 李鑫;基于電池放電效率的純電動(dòng)汽車?yán)m(xù)航能力的研究[D];重慶理工大學(xué);2015年
4 李思;電動(dòng)汽車鋰離子電池等效電路模型的參數(shù)辨識(shí)研究[D];北京理工大學(xué);2015年
5 桂宇;純電動(dòng)汽車鋰動(dòng)力電池組雙向均衡控制策略研究及系統(tǒng)開發(fā)[D];吉林大學(xué);2014年
6 林思岐;電池均衡電路的研究及應(yīng)用[D];北京交通大學(xué);2013年
7 何磊;電動(dòng)汽車鋰離子電池建模及SOC估計(jì)方法研究[D];哈爾濱工業(yè)大學(xué);2012年
8 王振世;基于MC9S12XET256和AD7280鋰電池組管理系統(tǒng)的研究和設(shè)計(jì)[D];遼寧大學(xué);2012年
9 陳晶晶;串聯(lián)鋰離子電池組均衡電路的研究[D];浙江大學(xué);2008年
10 馮華;電動(dòng)汽車用電池管理系統(tǒng)的研制[D];北京交通大學(xué);2007年
,本文編號(hào):2071498
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2071498.html