直流微電網(wǎng)蓄電池功率均衡及母線電壓穩(wěn)定控制研究
本文選題:直流微電網(wǎng) + 蓄電池儲能裝置 ; 參考:《西安理工大學(xué)》2017年碩士論文
【摘要】:近年來,直流微電網(wǎng)得到了極大關(guān)注和迅速發(fā)展,成為接納光伏等分布式可再生能源的良好方式。儲能裝置作為直流微電網(wǎng)中必不可少的組成部分和關(guān)鍵支撐技術(shù),其高效利用和有效管理,對平抑可再生能源發(fā)電及負(fù)荷的波動(dòng)、穩(wěn)定直流母線電壓、提升整個(gè)直流微電網(wǎng)的電能質(zhì)量和供電可靠性具有重要的作用。針對直流微電網(wǎng)中集中式蓄電池儲能裝置因荷電狀態(tài)(State of Charge,SOC)及接口變換器差異等造成的功率分配不均問題,提出一種基于SOC不平衡度的功率分配控制策略。引入SOC不平衡度算法并構(gòu)建SOC不平衡度對角矩陣,通過SOC不平衡度閾值判斷蓄電池儲能裝置均衡狀態(tài)并獲取合理的功率分配指令。仿真和實(shí)驗(yàn)結(jié)果表明該方法能夠有效控制集中式蓄電池儲能裝置實(shí)現(xiàn)功率均衡分配。研究適用于直流微電網(wǎng)分布式蓄電池儲能裝置的功率動(dòng)態(tài)自均衡控制策略,提出一種基于儲能SOC的改進(jìn)下垂控制方法,通過引入的SOC不平衡度算法動(dòng)態(tài)調(diào)節(jié)下垂系數(shù),控制各蓄電池儲能裝置的SOC及輸出功率達(dá)到動(dòng)態(tài)均衡;采用傳統(tǒng)母線電壓二次控制方法補(bǔ)償下垂控制引起的直流母線電壓跌落,維持直流母線電壓的穩(wěn)定。仿真和實(shí)驗(yàn)結(jié)果驗(yàn)證了該控制方法的正確性和有效性。為解決光伏等可再生能源及負(fù)荷造成的直流母線電壓波動(dòng)問題,針對儲能接口變換器,引入虛擬直流電機(jī)(Virtual DC Machine, VDCM)控制策略。探究VDCM及其改進(jìn)控制策略的工作機(jī)理及穩(wěn)定直流母線電壓的原理,建立VDCM控制系統(tǒng)的小信號模型分析控制參數(shù)對系統(tǒng)穩(wěn)定性的影響;與傳統(tǒng)雙閉環(huán)恒壓控制進(jìn)行對比研究,探討VDCM控制策略對提升光儲負(fù)載直流微電網(wǎng)母線電壓穩(wěn)定性的作用。仿真和實(shí)驗(yàn)結(jié)果表明VDCM控制策略具有慣性和阻尼特性,能夠增強(qiáng)直流微電網(wǎng)的慣性和阻尼,有效緩沖和抑制功率波動(dòng)對直流母線電壓的影響,提升直流母線電壓的穩(wěn)定性。
[Abstract]:In recent years, DC microgrid has received great attention and rapid development, and has become a good way to accept distributed renewable energy such as photovoltaic. As an essential part and key supporting technology of DC microgrid, energy storage device can effectively utilize and manage the power generation and load fluctuation of renewable energy, and stabilize DC bus voltage. Improving the power quality and reliability of the whole DC microgrid plays an important role. A power allocation control strategy based on the unbalance of SOC is proposed to solve the problem of uneven power distribution caused by the difference between the state of charge (SOC) and the interface converter in the centralized storage battery in DC microgrid. The unbalance degree algorithm of SOC is introduced and the diagonal matrix of unbalance degree of SOC is constructed. Through the threshold of unbalance degree of SOC, the equilibrium state of storage battery device is judged and the reasonable power distribution instruction is obtained. Simulation and experimental results show that this method can effectively control the centralized storage battery energy storage device to achieve power distribution. The power dynamic self-equalization control strategy for distributed storage battery in DC microgrid is studied. An improved droop control method based on SOC is proposed, and the droop coefficient is dynamically adjusted by the introduced SOC unbalance algorithm. The SOC and output power of each battery storage device are controlled to achieve dynamic equalization, and the traditional bus voltage secondary control method is used to compensate the DC bus voltage drop caused by sag control to maintain the stability of DC bus voltage. Simulation and experimental results show that the proposed control method is correct and effective. In order to solve the voltage fluctuation of DC bus caused by renewable energy sources such as photovoltaic and load, a virtual DC machine (VDCM) control strategy is introduced for the energy storage interface converter. This paper probes into the working mechanism of VDCM and its improved control strategy and the principle of stabilizing DC bus voltage, establishes the small signal model of VDCM control system to analyze the influence of control parameters on the stability of the system, and compares it with the traditional double closed loop constant voltage control. This paper discusses the effect of VDCM control strategy on improving voltage stability of DC microgrid with optical storage load. Simulation and experimental results show that VDCM control strategy has inertia and damping characteristics, can enhance the inertia and damping of DC microgrid, effectively buffer and suppress the influence of power fluctuation on DC bus voltage, and improve the stability of DC bus voltage.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM727;TM912
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李鵬程;張純江;袁然然;闞志忠;陳宇飛;;改進(jìn)SOC下垂控制的分布式儲能系統(tǒng)負(fù)荷電流分配方法[J];中國電機(jī)工程學(xué)報(bào);2017年13期
2 王成山;李微;王議鋒;孟準(zhǔn);楊良;;直流微電網(wǎng)母線電壓波動(dòng)分類及抑制方法綜述[J];中國電機(jī)工程學(xué)報(bào);2017年01期
3 米陽;吳彥偉;朱銀珠;符楊;王成山;;含負(fù)荷功率自動(dòng)分配的獨(dú)立直流微電網(wǎng)協(xié)調(diào)控制[J];電網(wǎng)技術(shù);2017年02期
4 郭力;馮懌彬;李霞林;王成山;李運(yùn)帷;;直流微電網(wǎng)穩(wěn)定性分析及阻尼控制方法研究[J];中國電機(jī)工程學(xué)報(bào);2016年04期
5 李霞林;郭力;馮一彬;王成山;劉夢璇;;基于非線性干擾觀測器的直流微電網(wǎng)母線電壓控制[J];中國電機(jī)工程學(xué)報(bào);2016年02期
6 朱曉榮;蔡杰;王毅;馮亞東;胡仙來;;風(fēng)儲直流微網(wǎng)虛擬慣性控制技術(shù)[J];中國電機(jī)工程學(xué)報(bào);2016年01期
7 李霞林;郭力;王成山;李運(yùn)帷;;直流微電網(wǎng)關(guān)鍵技術(shù)研究綜述[J];中國電機(jī)工程學(xué)報(bào);2016年01期
8 李霞林;王成山;郭力;周麗紅;馮懌彬;;直流微電網(wǎng)穩(wěn)定控制關(guān)鍵技術(shù)研究綜述[J];供用電;2015年10期
9 盛萬興;劉海濤;曾正;呂志鵬;譚騫;段青;冉立;;一種基于虛擬電機(jī)控制的能量路由器[J];中國電機(jī)工程學(xué)報(bào);2015年14期
10 黃,
本文編號:2068202
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2068202.html