電力電纜用含石墨烯屏蔽材料的研究
本文選題:交聯(lián)聚乙烯絕緣電纜 + 屏蔽層; 參考:《華東理工大學(xué)》2017年碩士論文
【摘要】:隨著我國(guó)輸配電系統(tǒng)的升級(jí)換代,中高壓交聯(lián)聚乙烯絕緣電纜(XLPE電纜)每年的需求量在不斷增加。目前XLPE電纜所使用的半導(dǎo)電屏蔽料主要采用在乙烯-醋酸乙烯共聚物(EVA)中加入導(dǎo)電炭黑及其他助劑交聯(lián)制成,炭黑作為導(dǎo)電填料的添加量一般在15wt~50wt%。但由于添加了大量的炭黑,不但會(huì)降低屏蔽料的加工性能與力學(xué)性能,同時(shí),屏蔽料的表面也會(huì)因此變得粗糙。在電纜的使用過(guò)程中,屏蔽層表面的凸起在高壓電場(chǎng)下很容易產(chǎn)生針尖效應(yīng),引發(fā)電樹(shù)枝現(xiàn)象,最終導(dǎo)致絕緣層被擊穿。為了降低屏蔽層中導(dǎo)電填料的添加量,采用電學(xué)、力學(xué)性能更佳的石墨烯作為導(dǎo)電填料代替部分炭黑。首先,采用溶液法制備了 EVA/CB-GNS復(fù)合材料,確定了填料配比為EVA/15%CB-1.5%GNS。該配方雖然電學(xué)性能優(yōu)異,但是力學(xué)性能有較大的缺陷。為了進(jìn)一步提高材料的力學(xué)性能,本研究采用熔融混合法進(jìn)行工藝優(yōu)化,通過(guò)添加潤(rùn)滑劑、交聯(lián)劑、抗氧劑,采用合適的加工條件來(lái)提升復(fù)合材料的力學(xué)性能。經(jīng)實(shí)驗(yàn)確定15wt%導(dǎo)電炭黑、5wt%石墨烯、3wt%硬脂酰胺、3wt%過(guò)氧化二異丙苯(DCP)、0.75wt%抗氧劑300、轉(zhuǎn)速為65轉(zhuǎn)、混合時(shí)間為1Omin的加工條件,制得的屏蔽料樣品各項(xiàng)指標(biāo)均達(dá)到了行業(yè)標(biāo)準(zhǔn)規(guī)定,體積電阻率達(dá)到97.1Ω·cm,斷裂伸長(zhǎng)率與拉伸強(qiáng)度分別達(dá)到513.7%與 15.5MPa。為了提升石墨烯在復(fù)合材料中的分散性能與結(jié)合力,首先通過(guò)在石墨烯表面接枝KH570對(duì)石墨烯進(jìn)行改性,增強(qiáng)了石墨烯與EVA基體的結(jié)合力。然后,采用溶液法,將改性得到的石墨烯(MrGO)用于制備EVA/CB-MrGO復(fù)合材料,確定了復(fù)合材料的加料配方,并對(duì)復(fù)合材料性能進(jìn)行了測(cè)試表征。結(jié)果表明,MrGO的電學(xué)性能雖然較普通石墨烯有所下降,但是它和EVA基體的界面結(jié)合力有了極大的提升。制備得到的EVA/10%CB-6%MrGO復(fù)合材料的力學(xué)性能較EVA/15%CB-1.5%GNS復(fù)合材料有了較大提升,EVA/10%CB-6%MrGO復(fù)合材料展現(xiàn)了良好的力學(xué)性能。其中斷裂伸長(zhǎng)率與拉伸強(qiáng)度為554.1%與13.8MPa,分別提升了 215.5%與90.1%。
[Abstract]:With the upgrading of transmission and distribution systems in China, the annual demand for XLPE cables is increasing. At present, the semi-conductive shielding material used in XLPE cable is mainly made by adding conductive carbon black and other auxiliaries to ethylene vinyl acetate copolymer (EVA). However, due to the addition of a large amount of carbon black, not only the processing and mechanical properties of the shielding material will be reduced, but also the surface of the shielding material will become rough. During the use of the cable, the protruding of the shield layer surface is easy to produce the pinpoint effect under the high voltage field, which leads to the phenomenon of electric tree and finally leads to the breakdown of the insulating layer. In order to reduce the amount of conductive filler in the shielding layer, graphene, which has better mechanical properties and electrical properties, is used as the conductive filler instead of some carbon black. Firstly, EVA / CB-GNS composites were prepared by solution method, and the ratio of the fillers was determined as EVA / 15-1.5 GNS. Although the formula has excellent electrical properties, its mechanical properties have some defects. In order to further improve the mechanical properties of the composite, the melt mixing method was used to optimize the process. The mechanical properties of the composite were improved by adding lubricant, crosslinking agent, antioxidant and suitable processing conditions. The experimental results show that the processing conditions of 15wt% conductive carbon black, 5wt% graphene, 3wt% stearamide, 3wt% dicumyl peroxide (DCP), 0.75wt% antioxidant, 65rpm, 1Omin, and all the parameters of the samples are up to the industry standard. The volume resistivity reached 97.1 惟 cm, elongation at break and tensile strength reached 513.7% and 15.5 MPA, respectively. In order to improve the dispersibility and adhesion of graphene in composites, the adhesion between graphene and EVA matrix was enhanced by modifying graphene onto the surface of graphene. Then, the modified graphene (MrGO) was used to prepare EVA / CB-MrGO composites by solution method. The addition formula of the composites was determined, and the properties of the composites were tested and characterized. The results show that the electrical properties of Mr go are lower than those of ordinary graphene, but the interfacial adhesion between Mr go and EVA matrix has been greatly improved. Compared with EVA / 15-1.5 GNS composites, the mechanical properties of the prepared EVA / 10-6 / 10 ~ (-6) Mrs go composites are better than that of EVA / 15-1.5 / GNS composites. The mechanical properties of the EVA / 10-6 / 10 ~ (-6) Mrs go composites show good mechanical properties. The elongation at break and tensile strength were 554.1% and 13.8 MPa, which increased by 215.5% and 90.1%, respectively.
【學(xué)位授予單位】:華東理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM247
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Xingui Li;Yang Tao;Feiran Li;Meirong Huang;;Efficient Preparation and Characterization of Functional Graphene with Versatile Applicability[J];Journal of Harbin Institute of Technology;2016年03期
2 遲彩霞;喬秀麗;趙東江;趙九蓬;田軍;;氧化-還原法制備石墨烯[J];化學(xué)世界;2016年04期
3 曹海峰;張琪;吳忠;;石墨烯類材料電磁屏蔽性能研究進(jìn)展[J];化工新型材料;2016年02期
4 肖淑娟;于守武;譚小耀;;EVA/石墨烯復(fù)合材料的制備及性能研究[J];化學(xué)世界;2015年08期
5 Han Wang;Guiyuan Xie;Zhe Ying;Yu Tong;You Zeng;;Enhanced Mechanical Properties of Multi-layer Graphene Filled Poly(vinyl chloride) Composite Films[J];Journal of Materials Science & Technology;2015年04期
6 陳姚;趙苗苗;于欣偉;王步華;張慶;;KH570改性納米SiO_2的制備及應(yīng)用[J];電鍍與涂飾;2014年18期
7 曾廣勝;孫剛;;化學(xué)助劑對(duì)淀粉/EVA復(fù)合發(fā)泡材料力學(xué)性能的影響[J];材料保護(hù);2014年S1期
8 林海波;沈劍輝;向艷慧;劉富;薛立新;;熔融模壓制備PVDF/石墨烯復(fù)合材料及其性能研究[J];工程塑料應(yīng)用;2013年09期
9 時(shí)鏡鏡;馬文石;林曉丹;;KH-570功能化石墨烯的制備與表征[J];無(wú)機(jī)化學(xué)學(xué)報(bào);2012年01期
10 譚秀民;馮安生;趙恒勤;;硅烷偶聯(lián)劑對(duì)納米二氧化硅表面接枝改性研究[J];中國(guó)粉體技術(shù);2011年01期
,本文編號(hào):2066075
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2066075.html