音叉簧片式壓電諧振腔風能回收裝置研究
本文選題:風能回收 + 諧振腔; 參考:《合肥工業(yè)大學》2017年碩士論文
【摘要】:微電子、傳感器以及無線通訊等領域的快速發(fā)展與融合,促使了無線傳感網絡技術的誕生,并在生態(tài)環(huán)境監(jiān)測、建筑安全保障、軍事偵察預警等領域發(fā)揮了重要的應用價值。然而,現有無線傳感網絡節(jié)點大多依賴電池供電,存在環(huán)境污染、壽命有限、充電和更換困難等問題,成為阻礙無線傳感網絡技術發(fā)展的主要因素。隨著超低功耗電子技術的發(fā)展,無線傳感網絡節(jié)點的功耗可降低到毫瓦以下級別,使得回收周圍環(huán)境中的微弱能量為傳感節(jié)點供電成為可能。風能作為一種自然界廣泛存在的可再生能源,開發(fā)微型化的風能回收裝置并為偏遠地區(qū)的無線傳感網絡節(jié)點供電,將會有廣闊的應用前景。為了提高風能回收的效率,提升裝置工作的穩(wěn)定性,本文提出了一種音叉簧片式壓電諧振腔風能回收裝置,并完成了以下研究工作:(1)總結風致振動風能回收的基本結構原理和壓電懸臂梁振動能量回收的基本理論,建立音叉簧片式壓電諧振腔風能回收的理論基礎。(2)對單簧片和雙簧片諧振腔風能回收結構進行模態(tài)和流固耦合仿真分析,對比分析兩個裝置的振動形態(tài)、固有頻率以及腔體氣流作用規(guī)律。(3)制作單簧片和雙簧片諧振腔風能回收裝置樣機,搭建實驗測試平臺,實驗測試了關鍵結構、電學參量對回收能量的影響,并對比分析了兩個原理樣機的風能回收性能。實驗結果表明:適宜的腔體、簧片尺寸匹配可獲得較低的起振風速和較寬的風速范圍;簧片安裝方向對風能回收影響較小,簧片安裝角度對起振風速、輸出電壓有較大的影響;音叉雙簧片結構比單簧片結構具有更好的風能回收性能。腔體尺寸40×40×140mm~3的音叉簧片風能回收裝置,在6m/s風速、0.15MΩ最優(yōu)負載情況下,輸出功率達到0.83m W,能量轉換效率達到0.37%。綜上所述,本文設計的音叉簧片式壓電諧振腔風能回收裝置具有良好的風能轉化性能,可用于風能豐富的偏遠地區(qū)無線傳感網絡節(jié)點供電。
[Abstract]:The rapid development and integration of microelectronics, sensors and wireless communication has promoted the birth of wireless sensor network technology, and has played an important role in ecological environment monitoring, building safety protection, military reconnaissance and early warning. However, most of the existing wireless sensor network nodes rely on battery power supply, environmental pollution, limited life, charging and replacement difficulties, become the main factors that hinder the development of wireless sensor network technology. With the development of ultra-low power electronic technology, the power consumption of wireless sensor network nodes can be reduced to less than milliwatt, which makes it possible to recover the weak energy in the surrounding environment to power the sensor nodes. Wind energy is a kind of renewable energy widely existing in nature. Developing miniature wind energy recovery device and supplying power to wireless sensor network nodes in remote areas will have a broad application prospect. In order to improve the efficiency of wind energy recovery and enhance the stability of the device, a tuning fork and Reed type piezoelectric resonator wind energy recovery device is proposed in this paper. The main works are as follows: (1) the basic structure principle of wind-induced wind energy recovery and the basic theory of vibration energy recovery of piezoelectric cantilever beam are summarized. The theoretical basis of wind energy recovery of tuning fork Reed piezoelectric resonator is established. (2) the modal and fluid-solid coupling simulation analysis of wind energy recovery structure of single Reed and double spring resonator is carried out, and the vibration patterns of the two devices are compared and analyzed. (3) the prototype of wind energy recovery device with single Reed and double spring resonator is made, and the experimental test platform is set up. The key structure and the effect of electrical parameters on the recovery energy are tested experimentally. The wind energy recovery performance of two principle prototypes is compared and analyzed. The experimental results show that the suitable cavity size matching can obtain lower starting wind speed and wider wind speed range, the direction of Reed installation has little effect on wind energy recovery, and the installation angle of Reed has great influence on the starting wind speed and output voltage. The tuning fork double spring structure has better wind energy recovery performance than the single Reed structure. With 40 脳 40 脳 140mm~3 tuning fork wind energy recovery device, under the optimal load of 0.15m 惟 of 6m/s wind speed, the output power reaches 0.83m Wand the energy conversion efficiency reaches 0.37m. In conclusion, the tuning fork and Reed piezoelectric resonator wind energy recovery device designed in this paper has good wind energy conversion performance and can be used to supply power to wireless sensor network nodes in remote areas with abundant wind energy.
【學位授予單位】:合肥工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM614
【參考文獻】
相關期刊論文 前10條
1 曹自平;王楚;袁明;羅俊;張金婭;;環(huán)境能量采集技術的研究現狀及發(fā)展趨勢[J];南京郵電大學學報(自然科學版);2016年04期
2 白建華;辛頌旭;劉俊;鄭寬;;中國實現高比例可再生能源發(fā)展路徑研究[J];中國電機工程學報;2015年14期
3 劉成龍;孟愛華;陳文藝;李厚福;宋紅曉;;振動能量收集技術的研究現狀與發(fā)展趨勢[J];裝備制造技術;2013年12期
4 羅麒;;我國能源概況與能源消耗現狀分析[J];商;2013年16期
5 何挺;馬劍強;劉瑩;李保慶;褚家如;;一種基于梯形壓電懸臂梁的能量采集器研究[J];壓電與聲光;2012年06期
6 陳建明;梁妍;陳德慧;;基于太陽能的微能源收獲技術[J];華北水利水電學院學報;2012年02期
7 張宏彬;;能源問題、環(huán)境污染與“節(jié)能減排”[J];改革與開放;2010年20期
8 何超;陳文革;;壓電材料的制備應用及其研究現狀[J];功能材料;2010年S1期
9 裴先茹;高海榮;;壓電材料的研究和應用現狀[J];安徽化工;2010年03期
10 李林;郭隱彪;陳旭遠;;基于微機電系統(tǒng)的振動能量采集器件設計分析[J];機械工程學報;2009年09期
相關博士學位論文 前1條
1 劉慧媛;能源、環(huán)境與區(qū)域經濟增長研究[D];上海交通大學;2013年
相關碩士學位論文 前5條
1 王曉;基于雙分叉簧片和諧振腔結構的電磁式風能發(fā)電裝置[D];中國科學技術大學;2014年
2 彭書濤;d_(31)模式懸臂梁壓電換能器致動和俘能性能的理論分析[D];湘潭大學;2012年
3 杜志剛;基于諧振腔結構的微型風力發(fā)電機研究[D];重慶大學;2012年
4 許穎穎;懸臂梁壓電發(fā)電裝置的結構設計與研究[D];揚州大學;2012年
5 李雯;基于壓電懸臂梁的環(huán)境振動能量獲取方法的初步研究[D];天津大學;2008年
,本文編號:2057448
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2057448.html