動(dòng)圈式磁懸浮永磁平面電機(jī)設(shè)計(jì)與控制研究
本文選題:永磁電機(jī) + 平面電機(jī); 參考:《江蘇大學(xué)》2017年博士論文
【摘要】:隨著精密工程技術(shù)領(lǐng)域生產(chǎn)規(guī)模和技術(shù)水平的快速發(fā)展,相關(guān)行業(yè)對(duì)多自由度精密定位臺(tái)的需求在不斷增加,對(duì)其定位精度、響應(yīng)速度、自由度維數(shù)等性能的要求也在不斷提高。傳統(tǒng)的二維定位平臺(tái)采用機(jī)械疊加方式,存在側(cè)隙、變形、摩擦、結(jié)構(gòu)復(fù)雜和運(yùn)動(dòng)質(zhì)量大等固有缺點(diǎn),導(dǎo)致其定位精度和響應(yīng)速度很難達(dá)到滿意水平。磁懸浮永磁平面電機(jī)(Magnetically Levitated Permanent Magnet Planar Motor,MLPMPM)無需額外機(jī)械導(dǎo)軌支撐,直接驅(qū)動(dòng)動(dòng)子實(shí)現(xiàn)六自由度運(yùn)動(dòng),具有結(jié)構(gòu)簡(jiǎn)單緊湊、無機(jī)械摩擦、定位精度高、響應(yīng)速度快等優(yōu)點(diǎn),在現(xiàn)代高端裝備制造領(lǐng)域具有極大的應(yīng)用潛力。本文在國家自然科學(xué)基金(51175296)的資助下,以一種無鐵心動(dòng)圈式MLPMPM為研究對(duì)象,圍繞運(yùn)行機(jī)理、結(jié)構(gòu)設(shè)計(jì)、電磁分析、參數(shù)優(yōu)化、解耦控制和數(shù)字控制系統(tǒng)設(shè)計(jì)等方面開展研究。在此基礎(chǔ)上,設(shè)計(jì)了 MLPMPM的綜合實(shí)驗(yàn)平臺(tái)并開展了相關(guān)的實(shí)驗(yàn)研究,驗(yàn)證了方法和結(jié)論的正確性。論文的主要研究工作概略如下:(1)以減小磁場(chǎng)諧波含量為目標(biāo),提出了一種新型的二維磁鋼陣列結(jié)構(gòu)。在分析典型Halbach二維磁鋼陣列氣隙磁場(chǎng)分布的基礎(chǔ)上,對(duì)二維磁鋼陣列進(jìn)行了重構(gòu),設(shè)計(jì)出新型二維磁鋼陣列,并建立了氣隙磁場(chǎng)的諧波解析模型;以“磁場(chǎng)基波磁密幅值盡可能大且磁場(chǎng)畸變盡可能小”為目標(biāo)優(yōu)化設(shè)計(jì)了新型磁鋼陣列的主要參數(shù);建立了有限元仿真模型并開展數(shù)值驗(yàn)證研究,結(jié)果表明新型磁鋼陣列產(chǎn)生的磁場(chǎng)具有更高的基波磁通密度、更小的諧波畸變率和更一致的基波磁通密度幅值。(2)為減小推力波動(dòng)和耦合推力/轉(zhuǎn)矩,提出了“四線圈”的線圈陣列結(jié)構(gòu)。在二維磁鋼陣列磁場(chǎng)基波解析模型的基礎(chǔ)上,采用洛倫茲力法建立了單線圈的推力模型,對(duì)其受力特征進(jìn)行了分析;基于單線圈推力模型設(shè)計(jì)了“四線圈”型線圈陣列,可以有效消除偶次諧波磁場(chǎng)引起的推力波動(dòng)和抑制線圈短邊產(chǎn)生的耦合推力/轉(zhuǎn)矩,使MLPMPM具有更好的控制性能;建立了動(dòng)子線圈的推力和轉(zhuǎn)矩模型,以最大推力功耗比為目標(biāo)優(yōu)化設(shè)計(jì)了線圈參數(shù)。(3)針對(duì)MLPMPM多輸入多輸出、強(qiáng)耦合、多自由度的特點(diǎn),提出了 MLPMPM的解耦控制策略,設(shè)計(jì)了 MLPMPM的六自由度運(yùn)動(dòng)定位控制系統(tǒng);贛LPMPM的推力/轉(zhuǎn)矩?cái)?shù)學(xué)模型和id、fq解耦電流分配思想,提出MLPMPM的解耦電流分配方案,從物理層面實(shí)現(xiàn)了 MLPMPM六自由度運(yùn)動(dòng)的解耦;建立了參數(shù)化有限元計(jì)算模型,并開展仿真計(jì)算研究,證明了解耦策略的正確性;建立了 MLPMPM解耦系統(tǒng)的動(dòng)力學(xué)方程,提出了 MLPMPM的六自由度定位控制策略,構(gòu)建了控制系統(tǒng)的仿真驗(yàn)證平臺(tái),仿真結(jié)果驗(yàn)證了控制系統(tǒng)的正確性和有效性。(4)針對(duì)MLPMPM出現(xiàn)動(dòng)子偏航后模型失效的問題,建立了小角度偏航狀態(tài)下推力模型,提出了 MLPMPM六自由度定位控制的修正方案。分析了 MLPMPM動(dòng)子小角度偏航情形下的受力情況,建立了 MLPMPM小角度偏航時(shí)一維線圈簡(jiǎn)化推力模型和等效推力模型;基于等效推力模型提出MLPMPM小角度偏航狀態(tài)下電流補(bǔ)償方案和相位校正方法,并通過有限元仿真驗(yàn)證了修正方案的正確性和有效性;基于電流補(bǔ)償方案和相位校正方法,對(duì)MLPMPM的六自由度運(yùn)動(dòng)定位控制方案進(jìn)行了修正。(5)搭建了 MLPMPM綜合實(shí)驗(yàn)平臺(tái),開展相關(guān)的實(shí)驗(yàn)研究。設(shè)計(jì)了 MLPMPM的靜態(tài)實(shí)驗(yàn)平臺(tái)并開展靜態(tài)實(shí)驗(yàn)研究,驗(yàn)證了解耦電流分配方案的正確性;基于DSP TMS320 F28335構(gòu)建了 MLPMPM的數(shù)字控制的硬件系統(tǒng)和軟件系統(tǒng),開展MLPMPM基于位置-速度雙閉環(huán)PID控制和自抗擾控制(Active Disturbance Rejection Control, ADRC)的動(dòng)態(tài)實(shí)驗(yàn)研究;對(duì)閉環(huán)控制系統(tǒng)的動(dòng)態(tài)性能進(jìn)行分析,驗(yàn)證了 MLPMPM在小角度偏航情況下ADRC控制策略的有效性。
[Abstract]:With the rapid development of production scale and technical level in the field of precision engineering, the demand for multi degree of freedom precision positioning table in related industries is increasing, and the requirements of its positioning precision, response speed and the dimension of freedom dimension are also increasing. The traditional two-dimensional positioning platform adopts mechanical superposition mode, and there is side gap, deformation and friction. Magnetically Levitated Permanent Magnet Planar Motor (MLPMPM) does not need additional mechanical guide rail support, which directly drives the actuator to realize six degree of freedom motion with simple and compact structure. With the advantages of no mechanical friction, high positioning precision and fast response speed, it has great application potential in the field of modern high-end equipment manufacturing. Under the support of National Natural Science Foundation (51175296), a kind of iron free cardiogram type MLPMPM is used as the research object. It revolves around operation mechanism, structure design, electromagnetic analysis, parameter optimization, decoupling control and number. On the basis of this, the comprehensive experimental platform of MLPMPM was designed and the relevant experimental research was carried out to verify the correctness of the method and conclusion. The main research work of this paper is as follows: (1) a new type of two-dimensional magnetic steel array structure is proposed to reduce the harmonic content of the magnetic field. On the basis of analyzing the distribution of air gap magnetic field in the typical Halbach two-dimensional magnetic steel array, the two-dimensional magnetic steel array is reconstructed, a new two-dimensional magnetic steel array is designed, and the harmonic analytical model of the air gap magnetic field is set up. A new magnetic steel array is designed to optimize the magnetic steel array with the aim that the magnetic field is as large as possible and the magnetic field distortion is as small as possible. The finite element simulation model is established and the numerical verification is carried out. The results show that the magnetic field produced by the new magnetic steel array has higher fundamental magnetic flux density, smaller harmonic distortion rate and more consistent fundamental flux density amplitude. (2) a "four coil" coil is proposed to reduce thrust fluctuation and coupling thrust / torque. Array structure. Based on the analytical model of the fundamental wave of magnetic field in two-dimensional magnetic steel array, the thrust model of single coil is established by Lorenz force method, and its force characteristics are analyzed. Based on the single coil thrust model, a "four coil" type coil array is designed, which can effectively eliminate the thrust fluctuation and suppression coil caused by the even harmonic magnetic field. The coupling thrust / torque produced by the short side makes the MLPMPM better control performance; the thrust and torque model of the rotor coil is established, the coil parameters are optimized with the maximum thrust power ratio as the target. (3) the decoupling control strategy of the MLPMPM multi input and multi output, strong coupling and multi degree of freedom is proposed, and the MLPMPM decoupling control strategy is proposed and the MLPMPM is designed. The six degree of freedom motion positioning control system. Based on the MLPMPM thrust / torque mathematical model and the ID, FQ decoupling current allocation idea, the decoupling current allocation scheme of MLPMPM is proposed. The decoupling of MLPMPM six degrees of freedom motion is realized from the physical level, and the parametric finite element calculation model is established, and the simulation calculation is carried out to prove the understanding of the coupling strategy. The dynamic equation of MLPMPM decoupling system is established, the six degree of freedom positioning control strategy of MLPMPM is put forward, and the simulation verification platform of the control system is constructed. The simulation results verify the correctness and effectiveness of the control system. (4) a small angle yaw shape is established for the problem of the failure of the model after the moving sub navigation of the MLPMPM. Under the state of the lower thrust model, the correction scheme of the MLPMPM six degree of freedom positioning control is proposed. The force condition of the MLPMPM actuator in the small angle yaw situation is analyzed. The simplified thrust model and the equivalent thrust model of the one dimensional coil in the MLPMPM small angle yaw are established. Based on the equivalent thrust model, the current compensation side of the MLPMPM small angle yaw state is proposed. Case and phase correction method, and verify the correctness and effectiveness of the modified scheme through finite element simulation. Based on current compensation scheme and phase correction method, the six degree of freedom motion positioning control scheme of MLPMPM is modified. (5) a MLPMPM comprehensive experimental platform is built, and the related experimental research is carried out. The static reality of MLPMPM is designed. The test platform and static experimental research are carried out to verify the correctness of the coupling current allocation scheme. Based on DSP TMS320 F28335, the hardware and software systems of digital control of MLPMPM are constructed, and the dynamic experimental research of MLPMPM based on position speed double closed loop PID control and auto disturbance rejection control (Active Disturbance Rejection Control, ADRC) is carried out. The dynamic performance of closed loop control system is analyzed to verify the effectiveness of ADRC control strategy under the condition of small angle yaw in MLPMPM.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM351
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張前;楊震;;平面電機(jī)及控制系統(tǒng)的發(fā)展[J];內(nèi)蒙古石油化工;2012年15期
2 寇寶泉;張魯;邢豐;李立毅;張赫;;高性能永磁同步平面電機(jī)及其關(guān)鍵技術(shù)發(fā)展綜述[J];中國電機(jī)工程學(xué)報(bào);2013年09期
3 任壽萱;平面電機(jī)[J];電機(jī)技術(shù);1997年02期
4 張琦;平面電機(jī)的控制及其應(yīng)用前景[J];電子工業(yè)專用設(shè)備;2000年01期
5 李鑫;楊開明;朱煜;余東東;崔樂卿;;單邊非質(zhì)心驅(qū)動(dòng)平面電機(jī)運(yùn)動(dòng)控制研究[J];中國電機(jī)工程學(xué)報(bào);2012年27期
6 余東東;楊開明;朱煜;李鑫;崔樂卿;;三自由度氣浮平面電機(jī)非線性運(yùn)動(dòng)控制研究[J];中國電機(jī)工程學(xué)報(bào);2012年S1期
7 王才龍,胡建華;步進(jìn)平面電機(jī)[J];微特電機(jī);1977年01期
8 周贛;黃學(xué)良;周勤博;傅萌;張前;馮傳水;;基于模式力的平面電機(jī)控制方法[J];電工技術(shù)學(xué)報(bào);2009年02期
9 周贛;黃學(xué)良;柏瑞;傅萌;張前;;磁懸浮平面電機(jī)的解耦控制策略[J];中國電機(jī)工程學(xué)報(bào);2009年12期
10 寇寶泉;張赫;李立毅;;集成繞組結(jié)構(gòu)短行程直流平面電機(jī)[J];中國電機(jī)工程學(xué)報(bào);2011年15期
相關(guān)會(huì)議論文 前1條
1 郭占社;吳一輝;張平;梁靜秋;;基于微機(jī)械工藝的平面電機(jī)及其制作[A];制造業(yè)與未來中國——2002年中國機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2002年
相關(guān)博士學(xué)位論文 前6條
1 張魯;同心式繞組永磁同步平面電機(jī)的基礎(chǔ)研究[D];哈爾濱工業(yè)大學(xué);2014年
2 張赫;多自由度磁懸浮微動(dòng)臺(tái)的基礎(chǔ)研究[D];哈爾濱工業(yè)大學(xué);2014年
3 張新華;動(dòng)圈式磁懸浮永磁平面電機(jī)設(shè)計(jì)與控制研究[D];江蘇大學(xué);2017年
4 彭俊榮;動(dòng)圈式磁浮平面電機(jī)電磁結(jié)構(gòu)設(shè)計(jì)與優(yōu)化研究[D];華中科技大學(xué);2013年
5 雷金;洛侖茲平面電機(jī)的結(jié)構(gòu)動(dòng)態(tài)特性研究[D];華中科技大學(xué);2010年
6 劉廣斗;動(dòng)鐵式磁浮平面電機(jī)建模分析和電磁設(shè)計(jì)研究[D];華中科技大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 常崢;Halbach型磁體陣列永磁平面電機(jī)的基礎(chǔ)研究[D];哈爾濱工業(yè)大學(xué);2015年
2 諶雪鋒;永磁同步平面電機(jī)水冷散熱系統(tǒng)的研究[D];電子科技大學(xué);2015年
3 駱浩;動(dòng)圈式磁懸浮永磁平面電機(jī)優(yōu)化設(shè)計(jì)與運(yùn)動(dòng)控制[D];江蘇大學(xué);2016年
4 竇騰飛;開關(guān)磁阻平面電機(jī)結(jié)構(gòu)分析與控制策略研究[D];安徽工程大學(xué);2016年
5 周志祥;磁懸浮平面電機(jī)的有限元分析研究[D];華中科技大學(xué);2011年
6 姜恩澤;磁懸浮平面電機(jī)建模與運(yùn)動(dòng)控制研究[D];清華大學(xué);2012年
7 劉壓軍;永磁同步平面電機(jī)散熱與實(shí)驗(yàn)研究[D];電子科技大學(xué);2013年
8 王文祝;高精度平面電機(jī)性能參數(shù)測(cè)試方法研究[D];中南大學(xué);2013年
9 張魯;復(fù)合電流驅(qū)動(dòng)的永磁同步平面電機(jī)基礎(chǔ)研究[D];哈爾濱工業(yè)大學(xué);2010年
10 賈啟;三自由度永磁同步平面電機(jī)定位控制研究[D];沈陽工業(yè)大學(xué);2013年
,本文編號(hào):2035563
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2035563.html