基于異步發(fā)電機穩(wěn)壓SVC系統(tǒng)的研究
本文選題:異步發(fā)電機 + 端電壓穩(wěn)定; 參考:《青島大學(xué)》2017年碩士論文
【摘要】:異步發(fā)電機在實際穩(wěn)態(tài)運行過程中具有較差的帶載能力,利用具有快速調(diào)節(jié)特性的靜止無功補償器(Static Var Compensator—SVC)產(chǎn)生無功功率來補償負載變化時異步發(fā)電機所缺少的無功部分,以維持端電壓的穩(wěn)定。根據(jù)異步發(fā)電機在負載變化時端電壓的變化曲線,提出SVC電壓控制的策略,用以控制端電壓。本文對基于異步發(fā)電機穩(wěn)壓SVC系統(tǒng)進行了研究,分別搭建了仿真模型和實物模型進行實驗,通過對測量的系統(tǒng)電壓變量進行對比分析,驗證SVC對異步發(fā)電機端電壓的控制效果。分析了異步發(fā)電機的暫態(tài)數(shù)學(xué)模型,對SVC的結(jié)構(gòu)和工作原理進行分析,推導(dǎo)出SVC的數(shù)學(xué)模型,并結(jié)合異步發(fā)電機本身特點以確定SVC的補償容量。用SVC來補償負載變化時系統(tǒng)無功缺額,克服了傳統(tǒng)投切固定電容器的慢速性和間斷性的缺點。由于SVC中TCR模塊自身的構(gòu)造將產(chǎn)生一定量的諧波,針對含有的特定諧波設(shè)計相應(yīng)的濾波器以改善SVC系統(tǒng)的性能。對傳統(tǒng)檢測SVC系統(tǒng)中無功電流的方法p-q法和ip-iq法進行了分析,并提出了一種新的基于瞬時無功功率理論的檢測方法,提高無功電流的檢測速度,改善檢測精度。分析了FC-TCR型SVC幾種常用的控制策略,最終確定采用電壓閉環(huán)控制,并對PI控制器進行設(shè)計。根據(jù)采用的控制策略,對SVC穩(wěn)壓系統(tǒng)的主要硬件電路進行了設(shè)計,如供電電源的設(shè)計、信號采樣電路設(shè)計、電壓同步電路設(shè)計、晶閘管數(shù)字觸發(fā)器設(shè)計等;同時對軟件電路進行設(shè)計,主要包括主程序設(shè)計、中斷程序設(shè)計等。對孤立異步發(fā)電機投載運行進行了仿真和實驗,由實驗結(jié)果證明仿真模型的正確性和精確性。對基于異步發(fā)電機的SVC穩(wěn)壓系統(tǒng)投載運行進行不同PI控制參數(shù)下的仿真和實驗,通過對實驗結(jié)果進行分析,說明不同PI控制參數(shù)對系統(tǒng)的影響,驗證了基于異步發(fā)電機穩(wěn)壓SVC系統(tǒng)對異步發(fā)電機端電壓控制的正確性和有效性。該系統(tǒng)和傳統(tǒng)投切固定電容器相比具有優(yōu)越性,但控制系統(tǒng)仍有一定的缺陷,仍需繼續(xù)改進。
[Abstract]:The asynchronous generator has poor load capacity in the process of practical steady operation. The static Var compensator (static Var Compensator-SVC) is used to generate reactive power to compensate for the lack of reactive power when the load changes. To maintain the stability of the terminal voltage. According to the change curve of terminal voltage when the load of asynchronous generator changes, the SVC voltage control strategy is put forward to control the terminal voltage. In this paper, the SVC system based on asynchronous generator voltage stabilizer is studied, and the simulation model and the real model are set up for experiments, and the control effect of SVC on the voltage of asynchronous generator terminal is verified by comparing and analyzing the voltage variables of the measured system. The transient mathematical model of asynchronous generator is analyzed, the structure and working principle of SVC are analyzed, the mathematical model of SVC is deduced, and the compensation capacity of SVC is determined according to the characteristics of asynchronous generator itself. The SVC is used to compensate the reactive power deficit of the system when the load changes, which overcomes the shortcomings of the slowness and discontinuity of the conventional switching fixed capacitors. Because the construction of TCR module in SVC will produce a certain amount of harmonics, corresponding filters are designed to improve the performance of SVC system. Based on the analysis of the traditional reactive current detection methods, p-q method and ip-iq method, a new detection method based on instantaneous reactive power theory is proposed to improve the detection speed and accuracy of reactive current detection. Several common control strategies of FC-TCR SVC are analyzed. Finally, voltage closed loop control is adopted and Pi controller is designed. According to the control strategy, the main hardware circuits of SVC voltage stabilizer system are designed, such as power supply design, signal sampling circuit design, voltage synchronization circuit design, thyristor digital flip-flop design and so on. At the same time, the software circuit design, including the main program design, interrupt program design and so on. The simulation and experiment of the isolated asynchronous generator are carried out, and the correctness and accuracy of the simulation model are proved by the experimental results. The simulation and experiment of SVC voltage stabilized system based on asynchronous generator under different Pi control parameters are carried out. Through the analysis of the experimental results, the influence of different Pi control parameters on the system is explained. The correctness and effectiveness of voltage control based on SVC system for asynchronous generator are verified. Compared with the conventional switching fixed capacitor, the system has advantages, but the control system still has some defects, which still need to be improved.
【學(xué)位授予單位】:青島大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM31
【參考文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 周曉華;王琦;王荔芳;李振強;;靜止無功補償器的神經(jīng)元變結(jié)構(gòu)PID控制策略[J];電測與儀表;2015年10期
2 時國平;錢葉冊;許衛(wèi)兵;;基于模糊-PI控制的SVC系統(tǒng)研究[J];自動化與儀器儀表;2015年03期
3 袁翔;朱欽;趙曉鋒;楊天宇;蔣辰暉;王志新;;SVC與STATCOM建模及風電場仿真應(yīng)用研究[J];電器與能效管理技術(shù);2014年22期
4 盛洋波;盧子廣;胡立坤;廖一旭;;自勵異步發(fā)電機-異步電動機串聯(lián)型混合電動汽車系統(tǒng)[J];電機與控制應(yīng)用;2014年07期
5 雷邦軍;費樹岷;翟軍勇;戴先中;;靜止無功補償器(SVC)的一種新型非線性魯棒自適應(yīng)控制設(shè)計方法[J];中國電機工程學(xué)報;2013年30期
6 廖一旭;盧子廣;胡立坤;盛洋波;;基于非線性PID的自勵異步發(fā)電機穩(wěn)壓控制[J];電力電子技術(shù);2013年08期
7 楊曉峰;吳敬兵;;一種改進的非線性神經(jīng)元PID控制方法在高壓SVC中的應(yīng)用[J];電工電能新技術(shù);2013年02期
8 原蔚鵬;陳海瓊;黃春艷;韋任佳;江浩俠;;靜止無功補償器在并網(wǎng)風電場電壓控制中的應(yīng)用仿真分析[J];低壓電器;2013年05期
9 付興武;宋一鳴;張蒙;;自激異步發(fā)電機電壓和頻率控制方法的改進[J];電力電子技術(shù);2012年04期
10 趙利剛;房大中;孔祥玉;侯佑華;;綜合利用SVC和風力發(fā)電機的風電場無功控制策略[J];電力系統(tǒng)保護與控制;2012年02期
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前1條
1 廖智偉;孤立運行異步發(fā)電站的頻率與電壓控制研究[D];重慶大學(xué);2005年
,本文編號:2021843
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2021843.html