天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 電氣論文 >

基于漏磁場檢測的變壓器繞組變形在線監(jiān)測方法研究

發(fā)布時間:2018-06-13 11:18

  本文選題:變壓器 + 漏磁場; 參考:《華北電力大學》2017年碩士論文


【摘要】:變壓器作為一種傳輸和變換電能的重要設(shè)備,其繞組在運行過程中受到多次外部短路電動力的沖擊可能會發(fā)生不可恢復的形變,這種形變已成為引發(fā)變壓器繞組匝間短路故障的首要原因,因此,對變壓器繞組形變進行及時準確地在線監(jiān)測具有重大的現(xiàn)實意義。本文根據(jù)變壓器繞組發(fā)生形變后,將直接影響繞組附近的磁場分布,提出通過在線測量變壓器磁場的分布,間接實現(xiàn)對變壓器繞組形變的在線監(jiān)測。首先,對變壓器繞組形變與其磁場分布的對應關(guān)系進行研究。用ANSYS建立變壓器繞組正常及常見的形變模型,從定性和定量角度分析變壓器繞組形變與其磁場分布的對應關(guān)系。結(jié)果表明,變壓器磁場分布隨著繞組形變種類的不同而呈現(xiàn)不同的特征。其次,提出一種基于磁場分布特征的變壓器繞組形變分類法。根據(jù)繞組形變前后變壓器磁場的定量分析結(jié)果,定義五種用于判定變壓器繞組形變類型的系數(shù),以實現(xiàn)對變壓器繞組形變的分類。結(jié)果表明,該方法可以直觀、準確地對變壓器繞組的形變進行分類。然后,提出一種基于支持向量機的變壓器繞組形變分類法。用ANSYS仿真得到的變壓器繞組形變樣本對支持向量機進行訓練和測試,采用交叉驗證和網(wǎng)格搜索法對支持向量機的參數(shù)進行優(yōu)化。根據(jù)傳感器安裝方案對繞組形變分類正確率的影響,用改進粒子群算法對磁場傳感器安裝進行優(yōu)化。結(jié)果表明,該方法可以在安裝較少傳感器的情況下,實現(xiàn)對變壓器繞組形變的準確分類。最后,提出對變壓器繞組形變程度的判定方法。用歐式距離的大小衡量變壓器繞組形變的嚴重程度,根據(jù)粒子群算法得到的最優(yōu)傳感器安裝方案,通過分析變壓器繞組不同類型形變的嚴重程度與歐式距離的關(guān)系,提出對變壓器各種類型形變嚴重程度的判定方法,并給出變壓器繞組形變的判定閾值。
[Abstract]:As an important equipment for transmitting and converting electric energy, transformer windings may undergo irrecoverable deformation when they are impacted by external short-circuit electromotive force many times during operation. This kind of deformation has become the primary cause of transformer winding inter-turn short circuit fault. Therefore, it is of great practical significance to timely and accurately monitor transformer winding deformation on line. According to the fact that the magnetic field distribution near the transformer winding will be directly affected by the deformation of the transformer winding, this paper puts forward that the on-line monitoring of the transformer winding deformation can be indirectly realized by on-line measuring the distribution of the transformer magnetic field. Firstly, the relationship between transformer winding deformation and magnetic field distribution is studied. The normal and common deformation models of transformer windings are established by ANSYS. The relationship between transformer winding deformation and magnetic field distribution is analyzed qualitatively and quantitatively. The results show that the magnetic field distribution of transformer presents different characteristics with different types of winding deformation. Secondly, a method of transformer winding deformation classification based on magnetic field distribution is proposed. According to the quantitative analysis results of transformer magnetic field before and after winding deformation, five coefficients used to judge transformer winding deformation type are defined in order to realize the classification of transformer winding deformation. The results show that the method can classify transformer winding deformation intuitively and accurately. Then, a transformer winding deformation classification method based on support vector machine (SVM) is proposed. The support vector machine is trained and tested by the transformer winding deformation samples simulated by ANSYS. The parameters of the support vector machine are optimized by cross-validation and grid search. According to the effect of sensor installation scheme on the accuracy of winding deformation classification, an improved particle swarm optimization algorithm is used to optimize the magnetic field sensor installation. The results show that the method can accurately classify transformer winding deformation with fewer sensors installed. Finally, a method to judge the degree of transformer winding deformation is proposed. The magnitude of Euclidean distance is used to measure the severity of transformer winding deformation. According to the optimal sensor installation scheme obtained by particle swarm optimization, the relationship between the severity of different types of deformation of transformer windings and Euclidean distance is analyzed. A method for judging the severity of various types of transformer deformation is presented, and the threshold value of transformer winding deformation is given.
【學位授予單位】:華北電力大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM41

【參考文獻】

相關(guān)期刊論文 前10條

1 孫翔;何文林;詹江楊;鄭一鳴;劉浩軍;周建平;;電力變壓器繞組變形檢測與診斷技術(shù)的現(xiàn)狀與發(fā)展[J];高電壓技術(shù);2016年04期

2 鄧祥力;謝海遠;熊小伏;高亮;;基于支持向量機和有限元分析的變壓器繞組變形分類方法[J];中國電機工程學報;2015年22期

3 李俊卿;張立鵬;于海波;;基于探測線圈法的雙饋式發(fā)電機轉(zhuǎn)子匝間短路槽的定位研究[J];大電機技術(shù);2015年03期

4 鄧祥力;熊小伏;高亮;符楊;陳亞杰;;基于參數(shù)辨識的變壓器繞組變形在線監(jiān)測方法[J];中國電機工程學報;2014年28期

5 劉勇;崔彥捷;秦睿;汲勝昌;梁笑塵;朱生鴻;;套管故障對變壓器頻響曲線影響的仿真研究[J];高電壓技術(shù);2014年08期

6 孫宇光;余錫文;魏錕;黃子果;王祥珩;;發(fā)電機繞組匝間故障檢測的新型探測線圈[J];中國電機工程學報;2014年06期

7 劉興平;陳民鈾;;一種配電變壓器繞組變形故障的在線監(jiān)測新方法[J];電力系統(tǒng)保護與控制;2013年12期

8 陳玉紅;馮明;孟慶民;梁國鼎;洛君婷;于健;付瑤;李文海;;變壓器磁場分布的檢測和分析[J];變壓器;2013年03期

9 馬宏忠;耿志慧;陳楷;王春寧;李凱;李勇;;基于振動的電力變壓器繞組變形故障診斷新方法[J];電力系統(tǒng)自動化;2013年08期

10 歐小波;汲勝昌;王春杰;羅一洋;;基于“場-路”耦合有限元分析法的變壓器短路電抗仿真的研究[J];高壓電器;2010年03期

相關(guān)博士學位論文 前1條

1 韓正慶;變壓器仿真計算模型與保護原理研究[D];西南交通大學;2006年

相關(guān)碩士學位論文 前6條

1 穆亞東;基于參數(shù)辨識的變壓器保護[D];西南交通大學;2014年

2 王昊;大容量變壓器中漏磁場的分析與檢測[D];沈陽工業(yè)大學;2011年

3 劉麗麗;參數(shù)辨識及基于參數(shù)辨識的變壓器保護[D];東北電力大學;2008年

4 霍雨佳;支持向量機分類算法的研究與應用[D];華北電力大學(河北);2008年

5 郭太圣;基于電氣特征量的變壓器故障診斷新研究[D];河海大學;2007年

6 彭惠;變壓器漏磁場及箱體渦流損耗計算[D];清華大學;2004年

,

本文編號:2013852

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2013852.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1c1af***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com