高壓直流遠(yuǎn)距離輸電線路多脈沖源耦合故障定位方法研究
本文選題:高壓直流輸電 + 分布式多脈沖源; 參考:《哈爾濱理工大學(xué)》2017年碩士論文
【摘要】:近年來,高壓直流輸電發(fā)展迅速,遠(yuǎn)距離大容量輸電線不斷增加,故障種類和故障幾率也隨之增加,線路故障點(diǎn)定位的不準(zhǔn)確性將會(huì)延長(zhǎng)維修時(shí)間,從而延長(zhǎng)線路斷電時(shí)間,造成嚴(yán)重的經(jīng)濟(jì)損失。因此,快速與準(zhǔn)確的檢測(cè)輸電線路故障點(diǎn)對(duì)保證大容量高壓直流輸電的可靠性和穩(wěn)定性以及用戶用電質(zhì)量具有重要意義。電磁波在遠(yuǎn)距離輸電線路中傳播時(shí),輸電線路可等效為長(zhǎng)線;當(dāng)電磁波在長(zhǎng)線模型中傳播遇到阻抗不匹配點(diǎn)時(shí)會(huì)產(chǎn)生反向傳播的反射波,據(jù)此本文提出了適用于高壓直流遠(yuǎn)距離輸電線路故障檢測(cè)與定位的分布式多脈沖源耦合故障檢測(cè)與定位的新方法。將多個(gè)分布式信號(hào)發(fā)生裝置產(chǎn)生的信號(hào)注入直流輸電線路中,通過信號(hào)接收檢測(cè)裝置從直流輸電線路檢測(cè)反射波信號(hào),數(shù)據(jù)處理終端分析所述反射波信號(hào)的特征,根據(jù)一組反射波信號(hào)判斷直流輸電線路是否發(fā)生故障,并通過耦合運(yùn)算確定故障發(fā)生位置。仿真結(jié)果表明,對(duì)于高壓遠(yuǎn)距離直流輸電線路的故障,采用分布式多脈沖源耦合故障檢測(cè)與定位方法對(duì)其進(jìn)行檢測(cè),得到的波形辨識(shí)程度高,故障波形清晰,可以準(zhǔn)確識(shí)別高壓遠(yuǎn)距離輸電線路中的各類故障并檢測(cè)故障距離。為了確定反射脈沖起始點(diǎn),提高線路故障定位精度,采用小波分析法對(duì)脈沖波頭時(shí)刻及反射波波頭時(shí)刻進(jìn)行標(biāo)定,得到較為準(zhǔn)確的波頭時(shí)刻。將通過小波分析確定的波頭時(shí)刻作為輸入,故障距離作為輸出,用BP神經(jīng)網(wǎng)絡(luò)算法進(jìn)行建模與訓(xùn)練,最終得到合理的BP神經(jīng)網(wǎng)絡(luò)故障定位模型。分布式多脈沖源耦合故障檢測(cè)與定位方法能夠有效的提高高壓遠(yuǎn)距離直流輸電線路的故障定位的準(zhǔn)確率,能夠在線監(jiān)控高壓遠(yuǎn)距離直流輸電線路的故障并提高故障判斷的的可靠性和故障定位的精確性,保障電力系統(tǒng)安全穩(wěn)定運(yùn)行。
[Abstract]:In recent years, with the rapid development of HVDC transmission and the increasing of long-distance and large-capacity transmission lines, the types of faults and the probability of faults also increase. The inaccuracy of location of fault points will prolong the maintenance time, thus prolonging the power failure time of the lines. Cause serious economic losses. Therefore, rapid and accurate detection of transmission line fault points is of great significance to ensure the reliability, stability and power quality of large capacity HVDC transmission. When the electromagnetic wave propagates in the long-distance transmission line, the transmission line can be equivalent to the long line, and when the electromagnetic wave propagates in the long line model, the reflection wave will be produced when the impedance mismatch is encountered. Based on this, a new method of distributed multi-pulse source coupling fault detection and location for HVDC transmission line fault detection and location is proposed in this paper. The signal generated by a plurality of distributed signal generating devices is injected into a DC transmission line, and the reflected wave signal is detected from the DC transmission line by a signal receiving and detecting device, and the characteristics of the reflected wave signal are analyzed by a data processing terminal. According to a set of reflected wave signals, the fault of HVDC transmission line is judged, and the fault location is determined by coupling operation. The simulation results show that the distributed multi-pulse source coupled fault detection and location method is used to detect the faults of HVDC transmission lines. The waveform identification degree is high and the fault waveform is clear. All kinds of faults in high voltage long distance transmission line can be accurately identified and fault distance can be detected. In order to determine the starting point of reflection pulse and improve the accuracy of fault location, wavelet analysis was used to calibrate the time of pulse wave head and reflected wave head, and the more accurate time of wave head was obtained. The time of wave head determined by wavelet analysis is taken as input and fault distance is taken as output, and BP neural network algorithm is used to model and train. Finally, a reasonable fault location model of BP neural network is obtained. The distributed multi-pulse source coupled fault detection and location method can effectively improve the accuracy of fault location of HVDC transmission lines. It can monitor the faults of HVDC transmission line on-line and improve the reliability of fault judgment and the accuracy of fault location, so as to ensure the safe and stable operation of power system.
【學(xué)位授予單位】:哈爾濱理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM755
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張懌寧;王彩芝;李京;陳平;;基于數(shù)學(xué)形態(tài)學(xué)的直流接地極線路單端行波故障測(cè)距[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2016年01期
2 丘映丹;李海鋒;郭履星;梁遠(yuǎn)升;王小立;羅美玲;;基于異常點(diǎn)剔除的高壓直流輸電線路故障定位算法[J];電力建設(shè);2015年12期
3 徐海洋;宋國(guó)兵;樊占峰;靳幸福;;行波波頭的參數(shù)識(shí)別方法在高壓直流輸電系統(tǒng)中的應(yīng)用[J];西安交通大學(xué)學(xué)報(bào);2016年02期
4 肖遙;鄧軍;夏谷林;楊曉峰;張晉寅;;高壓直流輸電線路分布參數(shù)測(cè)量新方法(英文)[J];中國(guó)電機(jī)工程學(xué)報(bào);2015年20期
5 陳仕龍;謝佳偉;畢貴紅;張杰;張文英;高超;;一種特高壓直流輸電線路神經(jīng)網(wǎng)絡(luò)雙端故障測(cè)距新方法[J];電工技術(shù)學(xué)報(bào);2015年04期
6 馮媛碩;宋吉江;;小波分析法的直流輸電線路行波保護(hù)研究[J];云南電力技術(shù);2015年01期
7 康麗紅;唐昆明;羅建;徐瑞林;黃金海;;直流輸電線路單極接地雙端故障測(cè)距[J];電網(wǎng)技術(shù);2014年08期
8 李小葉;李永麗;張爍;;基于混合智能算法的直流輸電線路故障測(cè)距方法[J];電力系統(tǒng)保護(hù)與控制;2014年10期
9 劉可真;束洪春;于繼來;田鑫萃;駱逍;;±800kV特高壓直流輸電線路故障定位小波能量譜神經(jīng)網(wǎng)絡(luò)識(shí)別法[J];電力自動(dòng)化設(shè)備;2014年04期
10 宋國(guó)兵;靳東暉;靳幸福;李德坤;索南加樂;;CSC-HVDC輸電線路單端行波自動(dòng)故障定位方法[J];高電壓技術(shù);2014年02期
相關(guān)博士學(xué)位論文 前2條
1 邢魯華;高壓直流輸電線路保護(hù)與故障測(cè)距原理研究[D];山東大學(xué);2014年
2 劉亞東;輸電線路分布式故障測(cè)距理論與關(guān)鍵技術(shù)研究[D];上海交通大學(xué);2012年
相關(guān)碩士學(xué)位論文 前3條
1 張開迪;分布參數(shù)電路模型及其在特高壓線路保護(hù)中的應(yīng)用研究[D];重慶大學(xué);2014年
2 遲震;脈沖反射法電纜綜合故障定位研究[D];哈爾濱理工大學(xué);2013年
3 伍卓鋒;高壓輸電線路故障測(cè)距的研究[D];廣西大學(xué);2007年
,本文編號(hào):2013800
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2013800.html