基于LCC-串聯(lián)諧振的磁耦合無(wú)線電能傳輸系統(tǒng)研究
本文選題:磁場(chǎng)耦合諧振 + 無(wú)線電能傳輸 ; 參考:《山東大學(xué)》2017年碩士論文
【摘要】:隨著科學(xué)技術(shù)的日益進(jìn)步和經(jīng)濟(jì)水平的不斷提高,世界的能源態(tài)勢(shì)也隨之發(fā)生了前所未有的變化,電力在能源消費(fèi)中所占比重與日俱增。對(duì)比有線電能傳輸方式,無(wú)線電能傳輸技術(shù)的諸多優(yōu)勢(shì)使其成為當(dāng)前的研究熱點(diǎn)。磁場(chǎng)耦合諧振方式無(wú)線電能傳輸技術(shù)具有傳輸距離適中、傳輸功率較大、魯棒性好、適應(yīng)特殊環(huán)境等優(yōu)點(diǎn),具有廣闊的應(yīng)用前景。目前該領(lǐng)域已有一些研究成果,但距離實(shí)用化仍有一些的距離,尚有部分關(guān)鍵技術(shù)問(wèn)題尚未解決,亟待研究。本文首先介紹了幾種無(wú)線電能傳輸技術(shù),簡(jiǎn)單說(shuō)明了它們的基本結(jié)構(gòu)、傳輸原理和發(fā)展現(xiàn)狀。隨后分析了磁場(chǎng)耦合諧振方式無(wú)線電能傳輸技術(shù)的基本耦合原理、研究現(xiàn)狀,說(shuō)明諧振拓?fù)浣Y(jié)構(gòu)對(duì)無(wú)線電能傳輸系統(tǒng)影響密切,然后利用電路理論建立了串聯(lián)-串聯(lián)諧振拓?fù)浣Y(jié)構(gòu)的無(wú)線電能傳輸系統(tǒng)模型,并分析其傳輸特性。該系統(tǒng)在小負(fù)載阻值的條件下傳輸功率不高,并不適合應(yīng)用于電池?zé)o線充電系統(tǒng)中。并依此設(shè)計(jì)LCC-串聯(lián)諧振拓?fù)浣Y(jié)構(gòu)的無(wú)線電能傳輸系統(tǒng),利用交流阻抗分析法建立無(wú)線電能傳輸系統(tǒng)模型,分析其恒壓輸出傳輸特性,在小負(fù)載阻值的條件下傳輸功率較高,適合應(yīng)用于電池?zé)o線充電系統(tǒng)中。然后針對(duì)磁場(chǎng)耦合諧振方式無(wú)線電能傳輸系統(tǒng)的核心環(huán)節(jié)諧振線圈進(jìn)行分析,利用有限元仿真分析方法仿真當(dāng)諧振線圈的部分參數(shù)發(fā)生變化時(shí),諧振線圈的自感、互感和耦合系數(shù)的變化趨勢(shì),總結(jié)諧振線圈的設(shè)計(jì)原則,并以此原則設(shè)計(jì)諧振線圈。最后,設(shè)計(jì)硬件電路,搭建基于LCC-串聯(lián)諧振拓?fù)浣Y(jié)構(gòu)的磁場(chǎng)耦合諧振方式無(wú)線電能傳輸系統(tǒng)硬件實(shí)驗(yàn)平臺(tái),并進(jìn)行實(shí)驗(yàn)驗(yàn)證其傳輸特性。實(shí)驗(yàn)表明本文設(shè)計(jì)的基于LCC-串聯(lián)諧振拓?fù)浣Y(jié)構(gòu)的無(wú)線電能傳輸系統(tǒng)硬件實(shí)驗(yàn)平臺(tái)可以實(shí)現(xiàn)電能的無(wú)線傳輸,在85kHz工作頻率、傳輸距離8cm、負(fù)載電阻100Ω時(shí),傳輸效率達(dá)到95.23%。實(shí)驗(yàn)還分析了硬件實(shí)驗(yàn)平臺(tái)的傳輸特性,與理論分析結(jié)果大致吻合。
[Abstract]:With the development of science and technology and the improvement of economic level, the energy situation of the world has changed unprecedented, and the proportion of electricity in energy consumption is increasing day by day. Compared with wired power transmission mode, radio energy transmission technology has become a hot research topic due to its many advantages. The magnetic field coupled resonant radio transmission technology has the advantages of moderate transmission distance, large transmission power, good robustness and adaptability to special environment, so it has a broad application prospect. At present, there are some research achievements in this field, but there is still some distance from practicality, and there are still some key technical problems to be solved, which need to be studied urgently. In this paper, several radio energy transmission technologies are introduced, and their basic structure, transmission principle and development are briefly described. Then, the basic coupling principle of the magnetic field coupled resonant radio energy transmission technology is analyzed, and the current research situation shows that the resonant topology has a close effect on the radio energy transmission system. Based on the circuit theory, the radio energy transmission system model of series-series resonance topology is established and its transmission characteristics are analyzed. The transmission power of the system is not high under the condition of low load resistance, so it is not suitable for the battery wireless charging system. The radio energy transmission system with LCC-series resonant topology is designed. The model of radio energy transmission system is established by using AC impedance analysis method. The transmission characteristics of constant voltage output are analyzed. The transmission power is high under the condition of low load resistance. Suitable for battery wireless charging system. Then the resonance coil of the core link of the magnetic field coupled resonant mode radio energy transmission system is analyzed, and the self-inductance of the resonant coil is simulated by the finite element simulation method when some parameters of the resonant coil change. The design principle of resonant coil is summarized and the resonant coil is designed according to the variation trend of mutual inductance and coupling coefficient. Finally, the hardware circuit is designed, and the hardware experimental platform of magnetic field coupled resonant radio transmission system based on LCC-series resonant topology is built, and its transmission characteristics are verified by experiments. The experiment results show that the wireless energy transmission system based on LCC-series resonant topology can realize wireless transmission of electric energy. The transmission efficiency is 95.23 when the working frequency is 85kHz, the transmission distance is 8 cm, and the load resistance is 100 惟. The transmission characteristics of the hardware experimental platform are also analyzed, which are in good agreement with the theoretical analysis results.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM724
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王維;黃學(xué)良;譚林林;趙俊峰;陳琛;;磁諧振式無(wú)線電能傳輸系統(tǒng)諧振器參數(shù)對(duì)傳輸性能的影響性分析[J];電工技術(shù)學(xué)報(bào);2015年19期
2 譚林林;顏長(zhǎng)鑫;黃學(xué)良;王維;陳琛;;無(wú)線電能傳輸系統(tǒng)電壓穩(wěn)定在線控制策略的研究[J];電工技術(shù)學(xué)報(bào);2015年19期
3 郭堯;魏國(guó);宋凱;逯仁貴;朱春波;;一種新型WPT二次側(cè)諧振補(bǔ)償拓?fù)鋄J];電工技術(shù)學(xué)報(bào);2015年S1期
4 雷陽(yáng);張劍韜;宋凱;魏國(guó);朱春波;陳清泉;;多負(fù)載無(wú)線電能傳輸系統(tǒng)的穩(wěn)定性分析[J];電工技術(shù)學(xué)報(bào);2015年S1期
5 張劍韜;朱春波;雷陽(yáng);宋凱;逯仁貴;魏國(guó);陳清泉;;無(wú)線電能傳輸感性系統(tǒng)特性分析[J];電工技術(shù)學(xué)報(bào);2015年S1期
6 景無(wú)為;黃學(xué)良;陳琛;劉瀚;譚林林;王維;;多組無(wú)線電能傳輸系統(tǒng)間效率影響因素分析[J];電工技術(shù)學(xué)報(bào);2015年14期
7 范興明;莫小勇;張?chǎng)?;無(wú)線電能傳輸技術(shù)的研究現(xiàn)狀與應(yīng)用[J];中國(guó)電機(jī)工程學(xué)報(bào);2015年10期
8 薛明;楊慶新;李陽(yáng);張獻(xiàn);;磁耦合諧振式無(wú)線電能傳輸系統(tǒng)存在干擾因素下的頻率特性研究[J];電工電能新技術(shù);2015年04期
9 翟淵;孫躍;蘇玉剛;王智慧;李玉鵬;;具有恒壓特性的磁共振模式無(wú)線供電系統(tǒng)[J];電工技術(shù)學(xué)報(bào);2014年09期
10 陳琛;黃學(xué)良;孫文慧;譚林林;強(qiáng)浩;;金屬障礙物對(duì)磁耦合諧振無(wú)線電能傳輸系統(tǒng)的影響[J];電工技術(shù)學(xué)報(bào);2014年09期
相關(guān)碩士學(xué)位論文 前4條
1 白嬌嬌;感應(yīng)耦合能量傳輸系統(tǒng)頻率分叉現(xiàn)象研究[D];北京交通大學(xué);2015年
2 周海娟;非輻射共振耦合無(wú)接觸電能傳輸系統(tǒng)數(shù)值分析與實(shí)驗(yàn)研究[D];浙江大學(xué);2013年
3 黃帆;全橋LLCC感應(yīng)耦合能量傳輸裝置研究[D];北京交通大學(xué);2012年
4 周川;基于電場(chǎng)耦合的無(wú)線電能傳輸技術(shù)研究[D];重慶大學(xué);2012年
,本文編號(hào):2013532
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2013532.html