基于擬哈密頓理論的隨機電力系統(tǒng)暫態(tài)穩(wěn)定性分析
發(fā)布時間:2018-06-04 15:00
本文選題:擬哈密頓系統(tǒng) + 隨機微分方程。 參考:《電力系統(tǒng)自動化》2016年19期
【摘要】:蒙特卡洛法分析隨機穩(wěn)定性所需的計算量大,且難以同時考慮隨機過程中發(fā)生的大量不確定性;跀M哈密頓系統(tǒng)隨機平均方法,提出隨機電力系統(tǒng)暫態(tài)穩(wěn)定性分析法。首先,根據(jù)擴展等面積法,將受擾多機系統(tǒng)動態(tài)映射為兩群系統(tǒng),建立其隨機微分方程模型。忽略相關的非哈密頓因素,按哈密頓能量函數(shù)確定其安全區(qū)域。然后,考慮隨機擾動、阻尼等的影響,對等效擬哈密頓系統(tǒng)進行隨機平均,求出支配暫態(tài)能量轉移的平均擴散方程,并基于擴散理論,根據(jù)系統(tǒng)條件可靠性分析切除時間、阻尼系數(shù)及激勵強度等對隨機電力系統(tǒng)暫態(tài)穩(wěn)定性的影響。通過4機2區(qū)隨機系統(tǒng)驗證了該方法的有效性。
[Abstract]:Monte Carlo method needs a large amount of computation to analyze the stochastic stability, and it is difficult to take into account the large amount of uncertainty in the stochastic process at the same time. Based on the stochastic averaging method for quasi-Hamiltonian systems, a stochastic power system transient stability analysis method is proposed. Firstly, based on the extended equal-area method, the disturbed multi-machine system is dynamically mapped into two groups of systems, and its stochastic differential equation model is established. The relative non-Hamiltonian factors are ignored and the safe region is determined by the Hamiltonian energy function. Then, considering the influence of random disturbance and damping, the stochastic average of equivalent quasi-Hamiltonian system is obtained, and the average diffusion equation which governs the transient energy transfer is obtained. Based on the diffusion theory, the removal time is analyzed according to the reliability of the system conditions. The influence of damping coefficient and excitation intensity on transient stability of stochastic power system. The effectiveness of this method is verified by 4-machine 2-block stochastic system.
【作者單位】: 河海大學能源與電氣學院;南瑞集團公司(國網電力科學研究院);智能電網保護和運行控制國家重點實驗室;
【基金】:國家重點基礎研究發(fā)展計劃(973計劃)資助項目(2013CB228204) 國家電網公司科技項目(SGJS0000DKJS1501031)~~
【分類號】:TM712
【相似文獻】
相關期刊論文 前1條
1 張建勇;鞠平;余一平;吳峰;;電力系統(tǒng)在高斯隨機小激勵下的響應及穩(wěn)定性[J];中國科學:技術科學;2012年07期
相關碩士學位論文 前1條
1 趙偉翔;含風電場的電力系統(tǒng)穩(wěn)定性分析[D];華北電力大學;2014年
,本文編號:1977803
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1977803.html
最近更新
教材專著