水電站水機電系統(tǒng)耦聯(lián)特性研究
本文選題:水電站 + 水輪機; 參考:《昆明理工大學》2017年博士論文
【摘要】:引水系統(tǒng)、水力系統(tǒng)以及電氣系統(tǒng)是水電站水力發(fā)電系統(tǒng)的三個重要組成部分,各系統(tǒng)間通過內(nèi)變量的耦聯(lián)形成包含不同物理特征的復雜非線性動力系統(tǒng),其內(nèi)部耦聯(lián)特性和動力學響應機制直接影響水力發(fā)電系統(tǒng)的穩(wěn)定性和機組暫態(tài)運行的調(diào)節(jié)品質,對系統(tǒng)的運行安全具有重要理論和工程意義。本論文結合國家自然科學基金重點項目"水電站的水機電耦合研究"(編號:50839003)開展了水機電耦合問題的理論描述、建模理論、計算方法以及穩(wěn)定性控制等方面的系統(tǒng)研究,取得了完整且具有創(chuàng)新的理論成果。主要研究內(nèi)容和成果如下。(1)研究了復雜引水系統(tǒng)基于剛性水擊、彈性水擊和耦合水擊模型的理論描述和動態(tài)特征建模,建立了包括隧洞動態(tài)、調(diào)壓井動態(tài)、壓力鋼管動態(tài)以及水輪機動態(tài)的復雜水力系統(tǒng)耦聯(lián)的控制方程,提出了基于系統(tǒng)內(nèi)特性關聯(lián)的非線性水輪機模型。通過復雜水力系統(tǒng)特性分析,引入系統(tǒng)動態(tài)方程,并對系統(tǒng)動態(tài)方程進行擴展和模型有效性對比分析,建立了描述帶岔管的一管多機系統(tǒng)機組間相互水力干擾的動態(tài)模型及水力解耦的分析方法,實現(xiàn)了水電站隧洞-調(diào)壓井-壓力鋼管(主管+岔管)-水輪機系統(tǒng)的多機耦聯(lián)的理論建模和暫態(tài)分析。(2)研究了水電站引水系統(tǒng)、水輪發(fā)電系統(tǒng)以及調(diào)速控制系統(tǒng)之間存在的內(nèi)部耦聯(lián)關系,并在哈密頓理論的統(tǒng)一框架下建模,構造了水機電系統(tǒng)的哈密頓函數(shù),以哈密頓函數(shù)表征不同子系統(tǒng)間的能量輸運關系,建立了復雜水力系統(tǒng)水機電耦聯(lián)的理論模型。通過表征系統(tǒng)特征的結構矩陣和阻尼矩陣描述了各系統(tǒng)間變量的耦聯(lián)關系和動力學特征,提出了各子系統(tǒng)間內(nèi)部參數(shù)耦聯(lián)的暫態(tài)分析方法,揭示了水力發(fā)電系統(tǒng)暫態(tài)過程與電力負荷擾動的關聯(lián)機制和系統(tǒng)間動力學效應的輸運機理。(3)研究了基于耦合水擊模型的水機電耦聯(lián)理論和建模方法,建立了基于耦合水擊模型的水機電耦聯(lián)模型,提出了基于水輪機綜合模型特性曲線的耦聯(lián)暫態(tài)分析方法。根據(jù)電力負荷變化特性,模型中的活動導葉和調(diào)速控制系統(tǒng)將以水輪機綜合特性曲線為依據(jù),自動跟蹤電力負荷的變化特性,迭代完成水機電系統(tǒng)的暫態(tài)響應過程,獲得各變量的暫態(tài)時程。數(shù)值算例表明,建立的理論模型和提出的計算方法能很好地反映水力發(fā)電系統(tǒng)暫態(tài)過程中各系統(tǒng)間的耦合動力學效應,并能有效預測暫態(tài)過程中各系統(tǒng)的參數(shù)變化量及變化規(guī)律。(4)研究了水電站水機電系統(tǒng)耦合作用下的穩(wěn)定性及控制問題,基于系統(tǒng)的哈密頓函數(shù)構造了系統(tǒng)的Lyapunov函數(shù),設計了給定輸出條件下的鎮(zhèn)定控制器。提出了基于哈密頓水機電耦合模型的結構矩陣注入修改、阻尼矩陣注入修改的控制原理和策略,設計了相應的控制器,實現(xiàn)了活動導葉對系統(tǒng)功率調(diào)節(jié)和頻率調(diào)節(jié)的跟蹤控制。仿真算例表明,提出的控制理論和方法能有效穩(wěn)定系統(tǒng)的暫態(tài)振蕩。
[Abstract]:The water diversion system, the hydraulic system and the electrical system are three important components of the hydroelectric power system of the hydropower station. Each system is coupled through the internal variables to form a complex nonlinear dynamic system containing different physical characteristics. The internal coupling characteristics and dynamic response mechanism directly affect the stability of the hydroelectric power system and the temporary generating unit. The regulation quality of state operation has important theoretical and engineering significance for the safety of the system. In this paper, the theoretical description, the modeling theory, the calculation method and the stability control of the water and electrical coupling problem are carried out in combination with the key project of the National Natural Science Foundation of the National Natural Science Fund "water and electricity coupling research of hydropower station" (number: 50839003). Complete and innovative theoretical results are obtained. The main research contents and results are as follows. (1) the theoretical description and dynamic characteristics modeling of the complex water diversion system based on rigid water hammer, elastic water hammer and coupled water hammer model are studied. The complex water including tunnel dynamics, dynamic state of pressure well, dynamic pressure steel tube and turbine dynamics is established. The nonlinear hydraulic turbine model based on the characteristic correlation in the system is proposed. The dynamic equations of the system are introduced through the analysis of the characteristics of the complex hydraulic system, and the dynamic equations of the system are extended and the validity of the model is compared and analyzed. The mutual hydraulic interference between the units of a multi machine system with a bifurcated tube is established. The dynamic model and the hydraulic decoupling analysis method have realized the theoretical modeling and transient analysis of the multi machine coupling of the tunnel pressure well pressure pipe (head + pipe) - hydraulic turbine system of the hydropower station. (2) the internal coupling relationship between the water diversion system, the hydroelectric generation system and the speed control control system of the hydropower station is studied, and the Hamilton theory is also studied. In the unified framework, the Hamilton function of the water and electrical system is constructed. The energy transport relationship between different subsystems is characterized by Hamilton function. A theoretical model of the coupling of water and electricity in the complex hydraulic system is established. The coupling relationship and dynamics of the variables between the systems are described by the structure matrix and damping matrix characterized by the characteristics of the system. Characteristics, a transient analysis method is proposed for the coupling of internal parameters among the subsystems. The correlation mechanism of transient process with power load disturbance and the transport mechanism of dynamic effects between systems are revealed. (3) the coupling theory and modeling method based on coupled water hammer model are studied, and a coupled water hammer model is established. The coupled transient analysis method based on the characteristic curve of the hydraulic turbine integrated model is proposed. According to the characteristics of the power load variation, the moving guide and speed control system in the model will be based on the comprehensive characteristic curve of the hydraulic turbine, and automatically track the change characteristics of the electric power load and iteratively complete the transient response of the hydraulic system. The transient time history of each variable is obtained. The numerical example shows that the established theoretical model and the proposed method can well reflect the coupling dynamic effect between the systems during the transient process of the hydroelectric power system, and can effectively predict the parameter variation and the change law of the systems during the transient process. (4) the hydroelectric power system of the hydropower station is studied. The stability and control problem under the system coupling, the Lyapunov function of the system is constructed based on the Hamilton function of the system. The stabilization controller under the given output condition is designed. The control principle and strategy of the structure matrix injection modification based on the Hamilton water electromechanical coupling model and the modification of the damping matrix injection are proposed, and the corresponding design is designed. The controller realizes the tracking control of the system power regulation and frequency regulation by the active guide blade. The simulation example shows that the proposed control theory and method can effectively stabilize the transient oscillation of the system.
【學位授予單位】:昆明理工大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TV734
【相似文獻】
相關期刊論文 前10條
1 任露泉;梁云虹;;生物耦元及其耦聯(lián)方式[J];吉林大學學報(工學版);2009年06期
2 黃玉盈;液固耦聯(lián)系統(tǒng)固有頻率的一個變分式[J];華中工學院學報;1985年01期
3 索瑋嵐;陳銳;;城市典型生命線系統(tǒng)耦聯(lián)多維測度方法研究[J];中國人口.資源與環(huán)境;2013年03期
4 鐘南萍;;文摘[J];世界地震工程;1993年03期
5 譚林森,駱東平;加筋雙層殼流固耦聯(lián)振動數(shù)值分析[J];華中理工大學學報;1992年05期
6 王文武;劉娟;付春;;扭轉耦聯(lián)效應的隨機分析及討論[J];內(nèi)蒙古農(nóng)業(yè)大學學報(自然科學版);2009年02期
7 譚邦本;;解決有限元半分析法中耦聯(lián)問題的一個有效方法[J];湖南大學學報;1986年04期
8 韓英才;埋入基礎水平與搖擺耦聯(lián)振動的簡化力學模型[J];地震工程與工程振動;1985年04期
9 魏璉,楊紅衛(wèi);單層廠房扭轉耦聯(lián)振動分析方法的研究[J];建筑結構學報;1995年04期
10 杜永峰;劉彥輝;李慧;;雙向偏心結構扭轉耦聯(lián)地震反應的序列最優(yōu)控制[J];地震工程與工程振動;2007年04期
相關會議論文 前2條
1 馬紅;李朝軍;李春伶;劉衛(wèi)星;;超聲評價Ⅱ型糖尿病患者心臟-血管耦聯(lián)[A];中國超聲醫(yī)學工程學會第十一屆全國超聲醫(yī)學學術大會論文匯編[C];2012年
2 劉林;白國良;趙春蓮;;空冷支架豎向混合結構平扭耦聯(lián)地震反應分析[A];中國鋼協(xié)鋼-混凝土組合結構分會第十一次年會論文集[C];2007年
相關博士學位論文 前2條
1 周昆雄;水電站水機電系統(tǒng)耦聯(lián)特性研究[D];昆明理工大學;2017年
2 徐佳曦;G蛋白耦聯(lián)受體激動劑調(diào)節(jié)細胞膜PIP_2代謝及生理學意義的研究[D];河北醫(yī)科大學;2014年
相關碩士學位論文 前7條
1 王璐璐;高壓輸電塔線體系風致耦聯(lián)效應研究[D];鄭州大學;2015年
2 張鐵軍;串聯(lián)式主附結構體系耦聯(lián)分析及隔震研究[D];中國海洋大學;2012年
3 陳亞東;應用超聲技術研究2型糖尿病患者心臟—血管耦聯(lián)[D];山西醫(yī)科大學;2013年
4 錢占松;電液伺服馬達壓力耦聯(lián)同步驅動技術研究[D];哈爾濱工業(yè)大學;2013年
5 張桂英;“酒精—沼氣雙發(fā)酵耦聯(lián)”工藝影響因子探索與工藝優(yōu)化[D];江南大學;2013年
6 楊海;基于膠體界面高效耦聯(lián)原理制備柔強型粘合劑[D];浙江理工大學;2013年
7 李江存;考慮SSI的偏心結構平扭耦聯(lián)彈塑性參數(shù)全過程分析[D];天津大學;2016年
,本文編號:1974061
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1974061.html