鋰金屬電池中隔膜潤濕性研究
本文選題:鋰金屬電池 + 隔膜潤濕性 ; 參考:《合肥工業(yè)大學(xué)》2017年碩士論文
【摘要】:鋰金屬電池具有比鋰離子電池更高的能量密度。但鋰金屬負(fù)極存在的鋰枝晶問題限制了鋰金屬電池的實(shí)用化。隔膜-電解液界面潤濕性顯著影響鋰金屬電池性能,特別是鋰枝晶的生長。一方面,良好的隔膜潤濕性有利于鋰離子在隔膜微孔中的傳導(dǎo),從而減小電池內(nèi)阻;另一方面,良好的隔膜潤濕性有利于改善鋰金屬負(fù)極表面電流分布,促進(jìn)鋰金屬在電極表面均勻沉積/脫出從而避免產(chǎn)生枝晶。本論文主要圍繞隔膜-電解液界面潤濕性展開研究。首先研究了電解液對隔膜潤濕性的影響;其次開發(fā)了氟代醚、痕量水以及三嵌段有機(jī)非離子表面活性劑作為電解液添加劑來改善隔膜-電解液界面潤濕性;最后考察了上述添加劑對鋰金屬電池電化學(xué)性能的影響以及在抑制鋰枝晶上的應(yīng)用。主要包括以下內(nèi)容:第一章首先介紹了鋰金屬電池研究背景及研究進(jìn)展,其次介紹了隔膜潤濕性對電池性能的影響并綜述了改善隔膜潤濕性的一般方法。第二章主要介紹了本論文涉及到的實(shí)驗(yàn)藥品、實(shí)驗(yàn)設(shè)備以及實(shí)驗(yàn)方法。第三章1)考察了碳酸酯類有機(jī)溶劑對隔膜潤濕性的影響,研究結(jié)果表明:具有高粘度和高介電常數(shù)的溶劑更傾向于獲得較差的隔膜潤濕性;2)考察了具有不同陰離子結(jié)構(gòu)的鋰鹽對隔膜潤濕性的影響,研究結(jié)果表明:雙三氟磺酰亞胺鋰(LiTFSI)分子結(jié)構(gòu)中由于含有極性很低的全氟烷基官能團(tuán)(-CF3)能夠有效減小電解液表面張力,從而獲得良好的隔膜-電解液界面潤濕性(特別是在高粘度電解液體系中);3)考察了當(dāng)鋰鹽濃度變化時(shí)隔膜-電解液的界面潤濕性,研究結(jié)果表明:隨著鋰鹽濃度的上升,隔膜-電解液的潤濕性越來越差,主要原因是電解液粘度的增加。第四章開發(fā)出1,1,2,2四氟乙基-2,2,3,3四氟丙基醚(HF2C-CF2-CH2-O-CF2-CF2H,F-EPE)、1H,1H,5H,八氟戊基-1,1,2,2四氟乙基醚(HF2C-CF2-CF2-CF2-CH2-O-CF2-CF2H,F-EAE)、痕量水(200ppm)以及聚氧化乙烯-聚氧化丙烯-聚氧化乙烯(HO-CH2-CH2-(O-CH2-CH2-)20-(O-CH(CH3)-CH2-)70-(O-CH2-CH2-)20-CH2-CH2-OH,P123)三嵌段非離子有機(jī)表面活性劑作為電解液添加劑來改善隔膜-電解液界面潤濕性并研究了這些添加劑對鋰金屬電池倍率和循環(huán)性能的影響。實(shí)驗(yàn)結(jié)果表明:1)F-EAE和F-EPE添加量分別為2%(w/w)和5%(w/w)時(shí)對隔膜潤濕性的改善作用最佳,隔膜吸液率由原來的30%分別提高到110%和105%,F-EAE添加量為2%時(shí)LiFePO4||Li電池10C(大充大放)條件下放電容量由原來的40 mAh g-1提高到110 mAh g-1;2)電解液中添加200ppm水并靜置48小時(shí)后,隔膜的吸液率由原來的30%提高到100%,LiFePO4||Li電池10C(小充大放)條件下放電容量由原來的96 mAh g-1提高到115 mAh g-1;3)P123添加量為0.2%時(shí)隔膜的吸液率由原來的30%提高到了85%,此時(shí)隔膜電導(dǎo)率由原來的0.045 mS cm-1提高到0.50 mS cm-1。第五章在Cu||Li電池體系中考察了不同比例LiPF6-LiTFSI雙鹽電解液對鋰金屬沉積形貌的影響。發(fā)現(xiàn)隨著隔膜-電解液界面潤濕性變好鋰金屬在銅箔上沉積的表面形貌由最初的針狀逐漸聚攏演變?yōu)閸u狀。本章中還考察了不同添加量的P123對枝晶的抑制作用,結(jié)果表明:P123添加量為0.2%時(shí)對枝晶的抑制作用最明顯,CV和XPS分析發(fā)現(xiàn)P123能夠在電極表面強(qiáng)烈吸附并作為一層“artificial SEI”對鋰金屬負(fù)極進(jìn)行保護(hù)從而抑制鋰枝晶和減少界面反應(yīng)。在論文第六章中,對本論文的結(jié)論和創(chuàng)新之處進(jìn)行了總結(jié),分析了論文的不足之處,并對未來工作提出了展望。
[Abstract]:Lithium metal batteries have higher energy density than lithium ion batteries. However, the existence of lithium dendrite in lithium metal negative electrode restricts the practicality of lithium metal cells. The wettability of diaphragm electrolyte interface significantly affects the performance of lithium metal cells, especially the growth of lithium dendrites. On the one hand, good diaphragm wettability is beneficial to lithium ion in diaphragm. On the other hand, good diaphragm wettability is beneficial to improve the surface current distribution of the lithium metal negative electrode and promote the uniform deposition / release of lithium metal on the surface of the electrode to avoid dendrites. This paper mainly focuses on the wettability of the diaphragm electrolyte interface. The influence of wettability, followed by the development of fluoroether, trace water and three block organic nonionic surfactants as an electrolyte additive to improve the interfacial wettability of the electrolyte electrolyte. Finally, the effects of the additives on the electrochemical performance of lithium metal batteries and the application on the inhibition of lithium dendrites were investigated. The following contents were included: The first chapter introduces the research background and research progress of lithium metal battery. Secondly, it introduces the influence of the diaphragm wettability on the performance of the battery and summarizes the general methods to improve the wettability of the diaphragm. The second chapter mainly introduces the experimental drugs, experimental equipment and the method of testing in this paper. Third chapter 1) inspected the organic carbonates. The effect of solvent on the wettability of the diaphragm showed that the solvent with high viscosity and high dielectric constant was more inclined to obtain poor diaphragm wettability; 2) the effect of lithium salts with different anion structures on the wettability of the diaphragm was investigated. The results showed that the molecular structure of double three fluorsulfonimide (LiTFSI) has the polarity in the molecular structure. A very low perfluoroalkyl group (-CF3) can effectively reduce the surface tension of the electrolyte, thus obtaining a good diaphragm - electrolyte interface wettability (especially in the high viscosity electrolyte system). 3) the interfacial wettability of the diaphragm electrolyte is investigated when the concentration of lithium salts is changed. The results show that with the increase of the concentration of lithium salts, the diaphragm - electricity The wettability of solution is getting worse and worse, the main reason is the increase of viscosity of electrolyte. The fourth chapter developed 1,1,2,2 tetrafluoroethyl -2,2,3,3 tetrafluoropropyl ether (HF2C-CF2-CH2-O-CF2-CF2H, F-EPE), 1H, 1H, 5H, eight fluoramyl -1,1,2,2 tefluoroethyl ether (HF2C-CF2-CF2-CF2-CH2-O-CF2-CF2H, F-EAE), trace water (200ppm), and polyoxyethylene polyoxidation C Alkene polyvinyl oxide (HO-CH2-CH2- (O-CH2-CH2-) 20- (O-CH (CH3) -CH2-) 70- (O-CH2-CH2-) 20-CH2-CH2-OH, P123) three block non ionic organic surfactants as an electrolyte additive to improve the interfacial wettability of the electrolyte electrolyte and study the effects of these additives on the ratio and cycling performance of lithium metal batteries. Experimental results show that: 1) F-E When the addition of AE and F-EPE is 2% (w/w) and 5% (w/w) respectively, the improvement of the wettability of the diaphragm is the best. The absorption rate of the diaphragm is increased from 30% to 110% and 105% respectively. The discharge capacity of LiFePO4||Li battery 10C (large charge and large discharge) is increased from 40 mAh g-1 to 110 mAh g-1, and the addition of 200ppm water in the electrolyte is added at 2% when the F-EAE addition is 2%. After 48 hours of static, the absorption rate of the diaphragm was increased from 30% to 100%, and the discharge capacity of LiFePO4||Li battery 10C (small charge and large discharge) was increased from 96 mAh g-1 to 115 mAh g-1; 3) the absorption rate of the diaphragm was increased from 30% to 85% when the P123 addition was 0.2%, and the conductivity of the diaphragm was increased from 0.045 mS cm-1 to 0.50 mS. In the cm-1. fifth chapter, the influence of different proportion of LiPF6-LiTFSI double salt electrolyte on the deposition morphology of lithium metal was investigated in the Cu||Li battery system. It was found that the surface morphology of the lithium metal deposited on the copper foil was gradually changed from the initial needle shape to the island with the wettability of the diaphragm electrolyte interface. In this chapter, the different additions of P1 were also investigated. The inhibitory effect of 23 on dendrites shows that the inhibition effect on dendrites is the most obvious when the addition of P123 is 0.2%. CV and XPS analysis found that P123 can strongly adsorb on the surface of the electrode and protect the lithium metal anode as a layer of "artificial SEI" to inhibit the lithium dendrite and reduce the interfacial reaction. In the sixth chapter of the paper, the paper The conclusions and innovations are summarized, the deficiencies of the paper are analyzed, and the future work is prospected.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM912
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張一兵,楊家軍;金屬/陶瓷的選材及其潤濕性[J];煤礦機(jī)械;2005年03期
2 陳廣琪;;木材潤濕性的測定及其應(yīng)用[J];建筑人造板;1991年04期
3 李戈揚(yáng),汪磊,戴嘉維,中江秀雄,羽根哲哉;液態(tài)鋁的潤濕性測量[J];理化檢驗(yàn)(物理分冊);1999年05期
4 韓紹昌,李學(xué)謙,徐仲榆;鉻對改善銅與炭石墨材料潤濕性的作用[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);1998年05期
5 李祥明,劉德浚,戴振東,姜澄宇;金屬陶瓷摩擦材料中的潤濕性問題[J];機(jī)械工程材料;1999年01期
6 黃志;王琳瑋;劉抗;胡雪蛟;;潤濕性梯度表面凝結(jié)水量研究[J];工程熱物理學(xué)報(bào);2011年11期
7 蔣官澄;魏怡君;張民;羅少杰;楊崢;龐姜濤;;氣體潤濕性評價(jià)方法綜述[J];科學(xué)技術(shù)與工程;2012年22期
8 曲仕堯,鄒增大,王育福;氧化鋁基陶瓷/金屬系統(tǒng)的潤濕性研究[J];山東機(jī)械;1999年02期
9 涂代惠,錢瑾華,王振秀;煤的潤濕性與注水防塵[J];河北煤炭建筑工程學(xué)院學(xué)報(bào);1996年01期
10 王希軍;馬南鋼;丁華東;傅蘇黎;翁哲;方圓;;鋁在B_4C陶瓷上的潤濕性[J];機(jī)械工程材料;2008年05期
相關(guān)會議論文 前10條
1 劉衛(wèi)東;姚同玉;肖漢敏;鄭德溫;楊燁;;潤濕性反轉(zhuǎn)劑的吸附特性研究[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2005論文摘要集(下)[C];2005年
2 肖鋒;野城清;;旨在觀察熔融鎳與固態(tài)多晶Al_2O_3潤濕性的改良靜滴方法評價(jià)[A];海峽兩岸第二屆工程材料研討會論文集[C];2004年
3 滿長陣;唐昶宇;江彭;劉昊;黃家偉;梅軍;劉煥明;;利用超熱氫交聯(lián)技術(shù)改善鋰電池隔膜浸潤性的研究[A];2013年全國高分子學(xué)術(shù)論文報(bào)告會論文摘要集——主題N:高分子加工與成型[C];2013年
4 徐輝;楊繼生;;表面活性劑-烷基苯-硅膠粉體系潤濕性改變及模擬油回收[A];中國化學(xué)會第26屆學(xué)術(shù)年會環(huán)境化學(xué)分會場論文集[C];2008年
5 孫亞頗;焦曉寧;;新型電池隔膜的研究現(xiàn)狀及發(fā)展前景[A];第七屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(第2分冊)[C];2010年
6 冒海燕;周定國;楊蕊;賈,
本文編號:1924803
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1924803.html