直流微網(wǎng)建模及能量協(xié)調(diào)控制仿真研究
本文選題:直流微網(wǎng) + 濾波器 ; 參考:《中國礦業(yè)大學(xué)》2017年碩士論文
【摘要】:為了解決分布式發(fā)電容量和成本的限制及控制困難等問題,微電網(wǎng)應(yīng)運(yùn)而生。目前,微電網(wǎng)主要采用交流微電網(wǎng)形式,但直流微網(wǎng)憑借其成本低、效率高、可靠性和可控性高及供電容量大等優(yōu)勢得到了迅猛發(fā)展。本文對直流微網(wǎng)的建模、穩(wěn)定性及能量協(xié)調(diào)控制等問題進(jìn)行了研究。首先,分析了直流微網(wǎng)的構(gòu)成和各單元的工作原理及控制方式。為了最大限度地利用可再生能源,風(fēng)光發(fā)電單元運(yùn)行在最大功率點(diǎn)追蹤(Maximum Power Point Tracking,MPPT)模式。其中,光伏發(fā)電單元采用與恒值法結(jié)合的占空比擾動觀測法實(shí)現(xiàn)MPPT,永磁直驅(qū)風(fēng)力發(fā)電單元采用最佳葉尖速比法實(shí)現(xiàn)MPPT。蓄電池儲能系統(tǒng)采用兩段式充電和恒壓放電控制策略以維持孤島運(yùn)行時系統(tǒng)的功率平衡。其次,研究了并網(wǎng)變流器(Grid-Connected Converter,GCC)的雙向運(yùn)行特性,并設(shè)計(jì)和優(yōu)化了雙向LCL濾波器參數(shù)。本文分別設(shè)計(jì)了中點(diǎn)箝位式(Neutral Point Clamped,NPC)三電平整流器和逆變器電網(wǎng)側(cè)的LCL濾波器參數(shù),以得到雙向NPC三電平變流器電網(wǎng)側(cè)LCL濾波器參數(shù)的取值范圍。為了提高GCC的雙向運(yùn)行性能,依據(jù)電網(wǎng)電流總諧波失真(Total Harmonic Distortion,THD)、調(diào)節(jié)時間和穩(wěn)定裕度對雙向LCL濾波器參數(shù)進(jìn)行了優(yōu)化。然后,根據(jù)直流微網(wǎng)各單元接口變換器的控制方式把各單元接口變換器分為控制母線側(cè)端口電壓的變換器(Bus Voltage Controlled Converter,BVCC)和控制母線側(cè)端口電流的變換器(Bus Current Controlled Converter,BCCC),建立了各接口變換器的小信號模型。在此基礎(chǔ)上計(jì)算并分析了各接口變換器的阻抗特性。依據(jù)通用阻抗判據(jù)和Nyquist穩(wěn)定性判據(jù)研究了不同運(yùn)行狀態(tài)下直流微網(wǎng)的穩(wěn)定性,并在Matlab/Simulink仿真平臺上搭建了風(fēng)光互補(bǔ)直流微網(wǎng)仿真模型進(jìn)行了實(shí)驗(yàn)驗(yàn)證。最后,分析了直流微網(wǎng)的運(yùn)行特性,并進(jìn)行了基于直流母線電壓的能量協(xié)調(diào)控制策略研究。當(dāng)直流微網(wǎng)并網(wǎng)運(yùn)行時,GCC作為電壓節(jié)點(diǎn),控制直流母線電壓和系統(tǒng)功率平衡;當(dāng)直流微網(wǎng)孤島運(yùn)行時,根據(jù)直流母線電壓和蓄電池荷電量(State of Charge,SOC)的變化確定直流母線電壓的控制策略。
[Abstract]:In order to solve the problem of limitation and control of distributed generation capacity and cost, microgrid emerges as the times require. At present, microgrid mainly adopts the form of AC microgrid, but DC microgrid has been developed rapidly because of its advantages of low cost, high efficiency, high reliability and controllability, and large power supply capacity. In this paper, the modeling, stability and energy coordination control of DC microgrid are studied. Firstly, the composition of DC microgrid and the working principle and control mode of each unit are analyzed. In order to maximize the use of renewable energy, the wind power generation unit operates in the maximum power point tracking (MPPT) mode. Among them, the MPPTs are realized by the duty cycle perturbation observation method combined with the constant value method, and the MPPTs are realized by the optimal blade tip velocity ratio method in the PMSU. The battery energy storage system adopts two stage charging and constant voltage discharge control strategy to maintain the power balance of the isolated island operation system. Secondly, the bidirectional operation characteristics of Grid-Connected Converters (Grid-Connected Converters) are studied, and the parameters of bidirectional LCL filters are designed and optimized. In this paper, the LCL filter parameters of neutral-point clamped three-level rectifier and inverter are designed, respectively, to obtain the range of LCL filter parameters on the grid side of bi-directional NPC three-level converter. In order to improve the bidirectional performance of GCC, the parameters of the bidirectional LCL filter are optimized according to the total Harmonic distortion (THD) of the total harmonic distortion of the current in the power network, the adjustment time and the stability margin. And then, According to the control mode of each unit interface converter in DC microgrid, each unit interface converter is divided into bus Voltage Controlled converter and bus Current Controlled converter. Small signal model of port converter. On this basis, the impedance characteristics of each interface converter are calculated and analyzed. Based on the universal impedance criterion and Nyquist stability criterion, the stability of DC microgrid in different operating states is studied, and the simulation model of wind and wind complementary DC microgrid is built on the Matlab/Simulink simulation platform for experimental verification. Finally, the operation characteristics of DC microgrid are analyzed, and the energy coordination control strategy based on DC bus voltage is studied. When DC microgrid is connected to grid, GCC is used as voltage node to control DC bus voltage and system power balance. The control strategy of DC bus voltage is determined according to the change of DC bus voltage and battery charge state of charge of SOC.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM727;TM743
【參考文獻(xiàn)】
中國期刊全文數(shù)據(jù)庫 前6條
1 支娜;張輝;鄭航;冉寶春;;雙向DC/DC變換器阻抗特性及穩(wěn)定性研究[J];電力電子技術(shù);2015年08期
2 王國棟;;智能微網(wǎng)研究綜述[J];中國電業(yè)(技術(shù)版);2012年02期
3 汪少勇;;基于分布式電源的微網(wǎng)的設(shè)計(jì)與運(yùn)行[J];電力自動化設(shè)備;2011年04期
4 蘇玲;張建華;王利;苗唯時;吳子平;;微電網(wǎng)相關(guān)問題及技術(shù)研究[J];電力系統(tǒng)保護(hù)與控制;2010年19期
5 敏政;王異凡;安艷濤;羅宏博;;我國小水電現(xiàn)狀及其代燃料前景[J];水利規(guī)劃與設(shè)計(jì);2010年02期
6 施婕;鄭漳華;艾芊;;直流微電網(wǎng)建模與穩(wěn)定性分析[J];電力自動化設(shè)備;2010年02期
中國博士學(xué)位論文全文數(shù)據(jù)庫 前2條
1 張欣;直流分布式電源系統(tǒng)穩(wěn)定性研究[D];南京航空航天大學(xué);2014年
2 汪令祥;永磁同步直驅(qū)型全功率風(fēng)機(jī)變流器及其控制[D];合肥工業(yè)大學(xué);2011年
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 張亮;孤島運(yùn)行下的直流微電網(wǎng)能量協(xié)調(diào)控制研究[D];遼寧工業(yè)大學(xué);2016年
2 曾紅梅;直流微電網(wǎng)分布式協(xié)同控制研究[D];浙江大學(xué);2016年
3 劉家贏;直流微電網(wǎng)混合儲能控制及系統(tǒng)分層協(xié)調(diào)控制策略[D];太原理工大學(xué);2015年
4 趙丹陽;風(fēng)光儲直流微電網(wǎng)協(xié)調(diào)控制研究[D];西南交通大學(xué);2015年
5 夏建委;永磁直驅(qū)風(fēng)力發(fā)電系統(tǒng)的建模及其控制策略[D];山東大學(xué);2015年
6 張會強(qiáng);基于直流母線電壓信號的直流微電網(wǎng)協(xié)調(diào)控制研究[D];東北電力大學(xué);2015年
7 胡墨擎;基于PSCAD的直流微電網(wǎng)建模及控制策略研究[D];東北大學(xué);2014年
8 張慧慧;直流微電網(wǎng)建模與控制策略研究[D];華北電力大學(xué);2014年
9 周奕鑫;永磁同步風(fēng)力發(fā)電雙PWM變換器設(shè)計(jì)[D];華南理工大學(xué);2013年
10 周躍斌;直流微電網(wǎng)的協(xié)調(diào)控制與能量管理研究[D];哈爾濱工業(yè)大學(xué);2013年
,本文編號:1917320
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1917320.html