局部陰影條件下基于MMC的光伏并網(wǎng)系統(tǒng)研究
本文選題:光伏發(fā)電 + 局部陰影。 參考:《湖南工業(yè)大學(xué)》2017年碩士論文
【摘要】:隨著社會(huì)的高速發(fā)展,人類(lèi)對(duì)能源的需求在不斷增加,常規(guī)的不可再生資源也越來(lái)越緊缺。為了解決能源短缺與環(huán)境污染問(wèn)題,人們開(kāi)始把目光投向取之不盡且無(wú)污染的太陽(yáng)能。光伏發(fā)電是目前利用太陽(yáng)能使用最多的發(fā)電技術(shù),在局部陰影條件下光伏電站并網(wǎng)優(yōu)化一直是該技術(shù)領(lǐng)域的一個(gè)研究熱點(diǎn)與難點(diǎn),而對(duì)光伏并網(wǎng)系統(tǒng)的拓?fù)浣Y(jié)構(gòu)進(jìn)行優(yōu)化是解決這一問(wèn)題的有效途徑之一。本文結(jié)合模塊化多電平拓?fù)浣Y(jié)構(gòu)在分布式能源發(fā)電中的獨(dú)特優(yōu)勢(shì),對(duì)一種基于模塊化多電平的光伏并網(wǎng)拓?fù)浣Y(jié)構(gòu)以及其控制策略進(jìn)行優(yōu)化改進(jìn)。首先,分析了光伏電池的物理模型及其輸出特性模型,在此基礎(chǔ)上推導(dǎo)出光伏陣列的數(shù)學(xué)模型,分析在局部陰影條件下光伏陣列功率失配的原因。然后介紹雙極式發(fā)電系統(tǒng)的拓?fù)浣Y(jié)構(gòu),分析了BOOST電路的工作原理。介紹了模塊化多電平變流器(modular mutilevel converter,MMC)的基本結(jié)構(gòu)和運(yùn)行機(jī)理,并結(jié)合了兩者的工作特性,對(duì)基于MMC的光伏發(fā)電系統(tǒng)結(jié)構(gòu)進(jìn)行了優(yōu)化設(shè)計(jì),同時(shí)分析了該系統(tǒng)的基本運(yùn)行原理。其次,對(duì)本文所改進(jìn)的光伏并網(wǎng)系統(tǒng)的啟停過(guò)程進(jìn)行分析,設(shè)計(jì)了系統(tǒng)的啟?刂屏鞒毯拖鄳(yīng)的控制器;對(duì)光伏陣列最大功率點(diǎn)跟蹤的原理進(jìn)行分析,結(jié)合對(duì)所提拓?fù)溥\(yùn)行特性的分析,為其設(shè)計(jì)了相應(yīng)的最大功率點(diǎn)跟蹤控制策略,可實(shí)現(xiàn)各個(gè)光伏組件的最大功率點(diǎn)電壓捕獲;分析了系統(tǒng)的并網(wǎng)過(guò)程,設(shè)計(jì)了并網(wǎng)控制器,實(shí)現(xiàn)光伏發(fā)電系統(tǒng)并網(wǎng)的穩(wěn)定運(yùn)行。最后,根據(jù)改進(jìn)的拓?fù)浣Y(jié)構(gòu)及針對(duì)該系統(tǒng)所設(shè)計(jì)的控制策略,用MATLAB/Simulink軟件進(jìn)行仿真實(shí)驗(yàn)。根據(jù)仿真結(jié)果得出結(jié)論,所改進(jìn)的光伏并網(wǎng)系統(tǒng)拓?fù)浣Y(jié)構(gòu)在局部陰影條件下能夠穩(wěn)定運(yùn)行。而且相對(duì)于常規(guī)集中式并網(wǎng)結(jié)構(gòu),本系統(tǒng)還具有太陽(yáng)能的利用率高、諧波含量低等優(yōu)點(diǎn)。
[Abstract]:With the rapid development of society, the demand for energy is increasing, and the conventional non-renewable resources are becoming more and more scarce. In order to solve the problem of energy shortage and environmental pollution, people began to focus on the inexhaustible and non-polluting solar energy. Photovoltaic (PV) generation is the most widely used power generation technology at present. Under the condition of local shadow, grid-connected optimization of photovoltaic power station has been a hot and difficult research topic in the field of photovoltaic power generation. One of the effective ways to solve this problem is to optimize the topology of grid-connected photovoltaic system. Based on the unique advantages of modularized multilevel topology in distributed energy generation, this paper optimizes and improves a modularized multilevel photovoltaic grid-connected topology and its control strategy. Firstly, the physical model of photovoltaic cell and its output characteristic model are analyzed, and the mathematical model of photovoltaic array is derived, and the reason of power mismatch in local shadow condition is analyzed. Then the topology of bipolar generation system is introduced and the working principle of BOOST circuit is analyzed. This paper introduces the basic structure and operation mechanism of modular multilevel converter (Modular mutilevel convertor MMC), combines their working characteristics, optimizes the structure of photovoltaic power generation system based on MMC, and analyzes the basic operation principle of the system. Secondly, the starting and stopping process of the improved photovoltaic grid-connected system is analyzed, and the control flow of the system and the corresponding controller are designed, and the principle of the maximum power point tracking of the photovoltaic array is analyzed. Combined with the analysis of the operation characteristics of the proposed topology, the corresponding maximum power point tracking control strategy is designed for it, which can realize the maximum power point voltage capture of each photovoltaic module, and the grid-connected process of the system is analyzed, and the grid-connected controller is designed. To realize the stable operation of photovoltaic power system. Finally, according to the improved topology and the control strategy designed for the system, the simulation experiment is carried out with MATLAB/Simulink software. According to the simulation results, it is concluded that the improved photovoltaic grid-connected system topology can operate stably under the condition of local shadow. Compared with the conventional centralized grid-connected structure, the system also has the advantages of high utilization of solar energy and low harmonic content.
【學(xué)位授予單位】:湖南工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM615
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 辛乳江;魏勇;;光伏發(fā)電并網(wǎng)關(guān)鍵技術(shù)及對(duì)策探究[J];工業(yè)技術(shù)創(chuàng)新;2017年01期
2 潘慧;;大型光伏電站中集中式逆變器與組串式逆變器的選擇[J];上海節(jié)能;2017年01期
3 霍東亨;;探討分布式光伏發(fā)電并網(wǎng)對(duì)配電網(wǎng)運(yùn)行安全的影響[J];科技創(chuàng)新與應(yīng)用;2017年03期
4 肖建東;沈友建;張英亮;;兩級(jí)式光伏并網(wǎng)發(fā)電系統(tǒng)控制規(guī)律研究與仿真[J];電工電氣;2017年01期
5 曹進(jìn);;我國(guó)發(fā)展太陽(yáng)能光伏發(fā)電的必要性分析[J];山東工業(yè)技術(shù);2017年01期
6 陳豐;;配電網(wǎng)電壓受分布式光伏并網(wǎng)影響分析[J];工程技術(shù)研究;2016年08期
7 余銳;巢紅暄;;光伏并網(wǎng)發(fā)電系統(tǒng)對(duì)電網(wǎng)的影響研究[J];通訊世界;2016年24期
8 范成忠;;太陽(yáng)能光伏發(fā)電技術(shù)核心問(wèn)題與前景展望[J];工業(yè)技術(shù)創(chuàng)新;2016年06期
9 方永輝;孫宇貞;李平;劉國(guó)建;;光伏并網(wǎng)發(fā)電系統(tǒng)的技術(shù)發(fā)展趨勢(shì)[J];電器與能效管理技術(shù);2016年23期
10 郭嘉榮;胡振球;;光伏電站陰影遮擋測(cè)試與分析[J];電子技術(shù)與軟件工程;2016年22期
相關(guān)博士學(xué)位論文 前1條
1 殷帥;我國(guó)光伏發(fā)電項(xiàng)目規(guī);l(fā)展研究[D];北京交通大學(xué);2012年
相關(guān)碩士學(xué)位論文 前4條
1 鄭浩;交流模塊式集成光伏發(fā)電系統(tǒng)的研究[D];安徽工業(yè)大學(xué);2016年
2 彭影;中國(guó)新能源產(chǎn)業(yè)發(fā)展趨勢(shì)研究[D];吉林大學(xué);2016年
3 李超凡;離網(wǎng)型光伏發(fā)電系統(tǒng)的分析和設(shè)計(jì)[D];長(zhǎng)安大學(xué);2015年
4 金兵梅;MMC-HVDC系統(tǒng)的啟停控制策略研究[D];華南理工大學(xué);2014年
,本文編號(hào):1894426
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1894426.html