多分辨形態(tài)學(xué)梯度—相關(guān)函數(shù)理論在特高壓直流輸電線路故障測距上的應(yīng)用
本文選題:特高壓工程 + 直流; 參考:《山東大學(xué)》2017年碩士論文
【摘要】:我國資源與負(fù)荷逆向分布的特點(diǎn),清潔能源須增大能源占比的發(fā)展形勢,亟需發(fā)展特高壓。而高壓直流輸電系統(tǒng)中間不落點(diǎn),可點(diǎn)對點(diǎn)、大功率、遠(yuǎn)距離直接將電力送往負(fù)荷中心,因此成為我國發(fā)展特高壓工程的首選。尤其是對經(jīng)營區(qū)域覆蓋26個(gè)省(自治區(qū)、直轄市)、覆蓋國土面積的88%以上、供電人口超過11億人的國家電網(wǎng)公司,更是把發(fā)展特高壓作為構(gòu)建全球能源互聯(lián)網(wǎng),攻堅(jiān)智能電網(wǎng)的發(fā)展方向。由于我國發(fā)展特高壓直流輸電技術(shù)的目的就是遠(yuǎn)距離、大容量的輸送、調(diào)節(jié)電能。大都橫跨多個(gè)省市,且為減少對群眾生產(chǎn)生活的影響,特高壓線路通道一般就規(guī)劃在偏遠(yuǎn)路上,經(jīng)過地形地貌復(fù)雜多變,防外破壓力大,線路運(yùn)行維護(hù)困難。同時(shí),因擔(dān)負(fù)著大容量的符合,一旦發(fā)生故障或缺陷,造成的經(jīng)濟(jì)損失和不良影響極大。因此,選取一種方便、可靠并易于操作的故障點(diǎn)距離測量和成熟的計(jì)算方法迫在眉睫。利用在輸電線路一側(cè)的方法進(jìn)行對故障點(diǎn)距離測算的單端算法是當(dāng)前推進(jìn)高壓直流故障測距的重要研究方向。利用此類方法,可以及時(shí)、有效的進(jìn)行故障波的提取檢測,并用傳統(tǒng)的行波故障點(diǎn)測距算法進(jìn)行距離測算。但此種算法是在理論條件下,面對實(shí)現(xiàn)復(fù)雜環(huán)境和諸多干擾波,以上算法難以在實(shí)際中進(jìn)行操作應(yīng)用,其測算結(jié)果也往往會出現(xiàn)諸多誤差。本篇論文正是基于以上問題,創(chuàng)造性的引入數(shù)學(xué)形態(tài)學(xué)梯度變換函數(shù),結(jié)合傳統(tǒng)距離測量算法完成對外界干擾因素的過濾,及待測算行波的極值剔除,進(jìn)而極大降低測距誤差,使操作方法更具有實(shí)用性和準(zhǔn)確性;谝陨纤悸,本文重點(diǎn)從一下過程進(jìn)行優(yōu)化完善:(1)對研究對象進(jìn)行分析研究,即將直流輸電線路上發(fā)生故障的條件、種類及過程進(jìn)行提取(假設(shè))分析,對搜集到的各類行波浪涌進(jìn)行對比,找出關(guān)鍵需要分析的行波,并推導(dǎo)出關(guān)鍵行波本身存在的干擾因素和不足。(2)開展建模分析,對實(shí)際運(yùn)行的特高壓直流線路網(wǎng)及設(shè)備進(jìn)行研究,總結(jié)其關(guān)鍵部位構(gòu)成及特點(diǎn)為數(shù)學(xué)建模提供思路和現(xiàn)實(shí)參考。上述工作完成后,應(yīng)用PSCAD電力系統(tǒng)仿真成熟軟件組建高壓直流輸電網(wǎng)模型及有可能發(fā)生故障點(diǎn)的模擬數(shù)據(jù)。分別研究正常運(yùn)行狀態(tài)、發(fā)生外力破壞情況(斷線或?qū)Φ胤烹?以及雷電干擾等情形進(jìn)行逐一分析。試驗(yàn)結(jié)果表明,上述觀點(diǎn)符合實(shí)際需求。(3)引入新算法,解決傳統(tǒng)計(jì)算方法面臨的誤差大的問題,利用數(shù)學(xué)形態(tài)學(xué)中梯度變換的優(yōu)點(diǎn),構(gòu)造出一個(gè)既可以過濾干擾波,又可以修正(剔除)帶分析行波的波峰和波谷上的極值,因此提出了"多分辨形態(tài)學(xué)梯度-相關(guān)函數(shù)理論在特高壓直流輸電線路故障測距上的應(yīng)用"這一最終研究課題。計(jì)算過程就是通過引入兩個(gè)類型的結(jié)構(gòu)元素,分離出所需要進(jìn)行計(jì)算的行波,再利用直流輸電線路上故障點(diǎn)行波的測距方法進(jìn)行相應(yīng)函數(shù)的構(gòu)造,最后實(shí)現(xiàn)利用單側(cè)測量點(diǎn)完成高壓直流輸電線路故障點(diǎn)的定位和測距。本論文通過兩種仿真數(shù)據(jù)軟件(即電力系統(tǒng)PSCAD和MATLAB數(shù)學(xué)軟件)對建立的模型進(jìn)行仿真實(shí)驗(yàn)。通過最終測算,得出以上計(jì)算方法的能夠大范圍的消除誤差,距離判定縮小至0.2公里的范圍內(nèi)。因此,本文涉及到新型測距方法可以在故障線路的單側(cè)進(jìn)行故障測距,并且能夠有效甄別外部干擾,凈化帶測量行波純度,進(jìn)而極大提高故障點(diǎn)距離測量的準(zhǔn)確性和現(xiàn)實(shí)可操作性。
[Abstract]:With the characteristics of reverse distribution of resources and load in China, clean energy needs to increase the development situation of energy occupation, and it is urgent to develop ultra high voltage. However, there is no drop in the middle of HVDC transmission system. It can be directly sent to the load center by point to point, high power and long distance, so it has become the first choice for the development of UHV project in China. The national Power Grid Corp covering 26 provinces (autonomous regions and municipalities), covering more than 88% of the land area and the power supply population of more than 1 billion 100 million people, is the development direction of developing the ultra high voltage as the global energy Internet to build the smart grid. The purpose of developing the technology of UHVDC transmission is long distance, large capacity transmission and regulation. Electrical energy, mostly across provinces and cities, and to reduce the impact on the production and life of the masses, the UHV route channel is generally planned in the remote road, through the complex terrain and geomorphology, the prevention of external breakage pressure and the difficulty of the line operation and maintenance. At the same time, the economic loss and malfunction caused by the large capacity and failure or defect occur. Therefore, it is imminent to select a convenient, reliable and easy to operate fault point distance measurement and mature calculation method. Using the method of one side of the transmission line to calculate the distance of the fault point is an important research direction for the current high voltage DC fault location. It performs the extraction and detection of the fault wave, and calculates the distance with the traditional traveling wave fault location algorithm. However, under the theoretical condition, the algorithm is difficult to operate in the actual environment and many interference waves, and the calculation results often have many errors. This paper is based on this paper. In the above problems, we creatively introduce mathematical morphology gradient transform function, combine the traditional distance measurement algorithm to filter the external interference factors and eliminate the extreme value of the traveling wave, thus greatly reducing the distance error, making the operation method more practical and accurate. Based on the above ideas, this paper focuses on the optimization of the process. (1) the research object is analyzed and studied. The condition, the type and the process of the fault in the DC transmission line are extracted (hypothesis) analysis, the collection of all kinds of wave surges are compared, the key need analysis traveling wave is found, and the interference factors and shortcomings of the key traveling wave itself are derived. (2) to carry out the modeling division. Analysis of the actual operation of the UHVDC line network and equipment, and summarize the key parts and characteristics for the mathematical modeling and practical reference. After the completion of the above work, the application of PSCAD power system simulation mature software to form a HVDC model and the possible failure point of the simulation data, respectively. The normal operation state, the occurrence of external force damage (broken line or ground discharge) and lightning interference and other cases are analyzed one by one. The results show that the above viewpoint is in line with the actual demand. (3) introducing a new algorithm to solve the problem of large error faced by the traditional calculation method, and using the advantages of the gradient transformation in mathematical morphology to construct an existing one. It is possible to filter the interference waves and to correct the extremes on the wave peaks and the valleys of the traveling wave. Therefore, the final research topic of "the application of the multi-resolution morphological gradient correlation function theory to the fault location of UHVDC transmission lines" is proposed. The calculation process is separated by introducing two types of structural elements. The traveling wave needs to be calculated, and the corresponding function is constructed by using the fault location method on the fault point on the DC transmission line. Finally, the location and distance measurement of the fault point of the HVDC transmission line are completed by the single side measurement point. This paper is built by two kinds of simulation data software (i.e., the power system PSCAD and the MATLAB mathematical software). The simulation experiment is carried out by the vertical model. Through the final calculation, the above calculation method can be eliminated in a wide range and the distance is reduced to 0.2 km. Therefore, this paper involves the new method of measuring the single side of the fault line, and can effectively identify the external interference and clean the belt to measure the traveling wave. Purity, thus greatly improving the accuracy and practical operability of fault point distance measurement.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM75
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;超大容量特高壓直流試驗(yàn)示范工程啟動(dòng)[J];東北電力技術(shù);2007年03期
2 ;向家壩—上!800kV特高壓直流示范工程全線帶電成功[J];東北電力技術(shù);2010年01期
3 ;向家壩—上海特高壓直流工程獲發(fā)改委正式核準(zhǔn)[J];電網(wǎng)技術(shù);2007年10期
4 ;國家電網(wǎng)特高壓直流示范工程進(jìn)入實(shí)施階段[J];電力系統(tǒng)自動(dòng)化;2007年24期
5 ;特高壓直流示范工程將全面建設(shè)[J];電力設(shè)備;2008年01期
6 郭小江;王毅;申洪;郭強(qiáng);卜廣全;;±800kV特高壓直流增容電網(wǎng)適應(yīng)性研究[J];中國電力;2009年12期
7 王國利;李銳海;陸國慶;梁曦東;;特高壓直流設(shè)備長期帶電考核場的設(shè)計(jì)和功能[J];南方電網(wǎng)技術(shù);2009年06期
8 ;哈鄭特高壓直流輸電線路全線架通[J];四川水力發(fā)電;2013年05期
9 石亮;龔景陽;袁奇;楊慶華;;特高壓直流輸電線路帶電作業(yè)工藝研發(fā)[J];電氣應(yīng)用;2013年S1期
10 張文亮;于永清;李光范;范建斌;宿志一;陸家榆;李博;;特高壓直流技術(shù)研究[J];中國電機(jī)工程學(xué)報(bào);2007年22期
相關(guān)會議論文 前1條
1 李園園;張平朗;;±800kV特高壓直流輸電線路工程造價(jià)結(jié)構(gòu)及投資水平分析[A];電網(wǎng)工程造價(jià)管理優(yōu)秀論文[C];2011年
相關(guān)重要報(bào)紙文章 前10條
1 李蒙;公司特高壓直流成套標(biāo)準(zhǔn)獲全國性大獎(jiǎng)[N];國家電網(wǎng)報(bào);2013年
2 記者史慧敏 通訊員馬劍;寧東—浙江特高壓直流工程獲核準(zhǔn)[N];國家電網(wǎng)報(bào);2014年
3 薛棟良;錦蘇特高壓直流線路渝2B標(biāo)段施工進(jìn)展順利[N];國家電網(wǎng)報(bào);2010年
4 記者 曾惠娟;向上特高壓直流工程檔案通過驗(yàn)收[N];國家電網(wǎng)報(bào);2011年
5 記者 程旭 通訊員 賀鵬;哈密—鄭州特高壓直流外送工程年內(nèi)開工[N];哈密日報(bào)(漢);2011年
6 支健;兩項(xiàng)特高壓直流工程前期專題評估全部完成[N];國家電網(wǎng)報(bào);2012年
7 記者 陳雪楓 通訊員 王志奇;特高壓直流工程亮“肌肉”[N];西南電力報(bào);2013年
8 記者 馬佳;±800千伏向上特高壓直流工程通過公司驗(yàn)收[N];國家電網(wǎng)報(bào);2013年
9 記者 王敏 通訊員 張進(jìn);±800千伏特高壓直流項(xiàng)目通過技術(shù)鑒定[N];國家電網(wǎng)報(bào);2013年
10 記者 朱怡;向上特高壓直流工程通過國網(wǎng)驗(yàn)收[N];中國電力報(bào);2013年
相關(guān)博士學(xué)位論文 前1條
1 唐波;特高壓直流線路對鄰近無線電子設(shè)施電磁干擾防護(hù)的關(guān)鍵問題[D];華中科技大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 孫萬錢;特高壓直流分層接入方式下系統(tǒng)穩(wěn)態(tài)特性研究[D];南京郵電大學(xué);2016年
2 陳斌;特高壓直流分層接入方式下無功電壓協(xié)調(diào)控制技術(shù)[D];東南大學(xué);2016年
3 戴玉臣;特高壓直流分層接入對大電網(wǎng)穩(wěn)定性影響研究[D];東南大學(xué);2016年
4 郭雨;T公司±800kV特高壓直流套管的市場營銷策略研究[D];東北大學(xué);2015年
5 陳沖;多分辨形態(tài)學(xué)梯度—相關(guān)函數(shù)理論在特高壓直流輸電線路故障測距上的應(yīng)用[D];山東大學(xué);2017年
6 王曉暉;特高壓直流接入對華東受端電網(wǎng)穩(wěn)定性影響的研究[D];上海交通大學(xué);2009年
7 王康;特高壓直流落點(diǎn)選擇及對交流系統(tǒng)的影響研究[D];華北電力大學(xué);2012年
8 鄭傳材;特高壓直流運(yùn)行故障特性及其對受端系統(tǒng)影響研究[D];華南理工大學(xué);2010年
9 張海鳳;特高壓直流控制系統(tǒng)研究[D];華南理工大學(xué);2010年
10 叢玉,
本文編號:1883839
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1883839.html