天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

高功率因數(shù)DCM Buck PFC變換器的研究

發(fā)布時(shí)間:2018-05-09 19:53

  本文選題:功率因數(shù)校正 + 降壓變換器 ; 參考:《南京理工大學(xué)》2017年碩士論文


【摘要】:經(jīng)過幾十年的高速發(fā)展,電力電子技術(shù)越來越成熟,應(yīng)用也越來越廣泛,例如電力系統(tǒng)、工業(yè)生產(chǎn)、航空航天和日常生活等領(lǐng)域都可以發(fā)現(xiàn)有電力電子器件的應(yīng)用,而電力電子器件比如二極管、Mos管、IGBT等都是非線性元件,它們的大量使用帶來了日益嚴(yán)峻的諧波污染問題,不僅嚴(yán)重破壞電網(wǎng)的供電質(zhì)量,還會影響其他用電設(shè)備的正常工作。為了保證電網(wǎng)的供電質(zhì)量,提高電網(wǎng)運(yùn)行可靠性,保護(hù)用電設(shè)備免受諧波污染,國際上制定了許多諧波標(biāo)準(zhǔn)來限制用電設(shè)備使用時(shí)產(chǎn)生的諧波含量,目前應(yīng)用較為廣泛的諧波標(biāo)準(zhǔn)是IEC61000-3-2。本文首先闡述了 一些基本概念,引入功率因數(shù)校正技術(shù)并簡要分析各種方法的優(yōu)劣后,選定DCM Buck PFC變換器作為研究對象,分析了占空比恒定的正弦電流控制下變換器的工作原理,詳細(xì)介紹了電感電流斷續(xù)時(shí)它的三種工作模態(tài),列出了開關(guān)管通斷狀態(tài)對應(yīng)的電感電流上升和下降斜率,推導(dǎo)出電感電流的峰值包絡(luò)線表達(dá)式,作出了三個(gè)模態(tài)的電流流通路徑以及電感、開關(guān)管、二極管和電容的電流波形,推導(dǎo)出輸入電流、占空比、輸入功率因數(shù)的表達(dá)式。對輸入電流進(jìn)行傅里葉展開后發(fā)現(xiàn),正弦電流控制下DCM Buck PFC變換器輸入功率因數(shù)不高的原因是輸入電流中含有大量的奇次諧波,尤其是3次諧波含量最高且都與基波相位相差180°,由此引入了在輸入電流的非死區(qū)內(nèi)加入與基波相位相同的3次諧波的最優(yōu)三次諧波電流控制方法。為了在整個(gè)設(shè)計(jì)輸入?yún)^(qū)間內(nèi)使得輸入功率因數(shù)都取得最大值,必須求得最優(yōu)的三次諧波電流與輸入電壓的關(guān)系式,進(jìn)而求得實(shí)現(xiàn)這一目的必須滿足的占空比表達(dá)式,并對其進(jìn)行簡化實(shí)現(xiàn),得到最終的簡化控制電路。文中對正弦電流控制和最優(yōu)三次諧波電流控制下,變換器的輸入電流及其諧波、輸入功率因數(shù)、臨界電感值、電感電流有效值及峰值、輸出電壓紋波和占空比等典型指標(biāo)作了詳細(xì)對比。對比結(jié)果顯示,采用最優(yōu)三次諧波電流控制的優(yōu)點(diǎn)有:(1)減小了輸入電流的峰值,且大幅降低了三次諧波的含量,THD顯著減少;(2)PF值在整個(gè)設(shè)計(jì)輸入?yún)^(qū)間內(nèi)均有所提高,尤其是低輸入電壓下PF值提高的幅度更高;(3)除了 90VAC輸入電壓下的臨界電感值近似相等外,其它輸入電壓下均比正弦電流控制對應(yīng)的臨界電感值大,電感電流的峰值包絡(luò)線的最大值及電感電流有效值在整個(gè)設(shè)計(jì)輸入?yún)^(qū)間內(nèi)均有所減小;(4)輸出電壓紋波更小。針對本文提出的正弦電流控制和最優(yōu)三次諧波電流控制方法設(shè)計(jì)了一款120W的實(shí)驗(yàn)樣機(jī)并經(jīng)過了實(shí)驗(yàn)測試,驗(yàn)證了所提方法有效性,達(dá)到了預(yù)期效果。
[Abstract]:After decades of rapid development, power electronics technology has become more and more mature and widely used. For example, power systems, industrial production, aerospace and daily life can all be found to have applications of power electronic devices. The power electronic devices such as diode mos transistor IGBT and so on are nonlinear elements. Their extensive use has brought more and more serious harmonic pollution problems which not only seriously damage the power supply quality of the power grid but also affect the normal operation of other power equipment. In order to ensure the quality of power supply, improve the reliability of the power network, and protect the power equipment from harmonic pollution, many harmonic standards have been established in the world to limit the harmonic content in the use of power equipment. At present, the widely used harmonic standard is IEC 61000-3-2. This paper introduces some basic concepts, introduces power factor correction (PFC) technology and briefly analyzes the advantages and disadvantages of various methods, and selects DCM Buck PFC converter as the research object. This paper analyzes the working principle of the converter under sinusoidal current control with constant duty cycle, introduces in detail the three working modes of the converter when the inductance current is intermittent, and lists the rising and falling slope of the inductor current corresponding to the on-off state of the switch tube. The expression of peak envelope of inductance current is derived, the current flow path of three modes and the current waveforms of inductor, switch tube, diode and capacitor are derived, and the expressions of input current, duty cycle and input power factor are derived. After Fourier expansion of input current, it is found that the input power factor of DCM Buck PFC converter under sinusoidal current control is due to the large number of odd-order harmonics in the input current. Especially, the third harmonic has the highest content and is 180 擄different from the fundamental phase, so an optimal third harmonic current control method is introduced, in which the third harmonic with the same fundamental phase is added in the non-dead region of the input current. In order to obtain the maximum input power factor in the whole design input range, the optimal relationship between the third harmonic current and the input voltage must be obtained, and the duty cycle expression which must be satisfied for this purpose is obtained. Finally, the simplified control circuit is obtained. For sinusoidal current control and optimal third harmonic current control, the input current and its harmonics, the input power factor, the critical inductance, the effective value and the peak value of inductance current are discussed in this paper. The typical indexes such as output voltage ripple and duty cycle are compared in detail. The comparison results show that the optimal third harmonic current control has the advantages of reducing the peak value of input current, and greatly reducing the content of third harmonic. THD significantly reduces the value of THD and increases the PF value in the whole design input range. In particular, the increase of PF value at low input voltage is higher than that of critical inductance under sinusoidal current control, except that the critical inductance at 90VAC input voltage is approximately equal, and the other input voltages are larger than those corresponding to sinusoidal current control. The maximum value of the peak envelope of the inductance current and the effective value of the inductance current decrease the output voltage ripple even less in the whole design input range. Aiming at the sinusoidal current control and the optimal third-harmonic current control method proposed in this paper, an experimental prototype of 120W is designed and tested, the validity of the proposed method is verified and the expected effect is achieved.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM46

【參考文獻(xiàn)】

相關(guān)期刊論文 前9條

1 王楠;許建平;劉雪山;;單開關(guān)Buck-Flyback功率因數(shù)校正變換器[J];中國電機(jī)工程學(xué)報(bào);2015年03期

2 鄭艷麗;秦會斌;;無源PFC電路在LED驅(qū)動電路中的應(yīng)用研究[J];機(jī)電工程;2011年06期

3 沙占友;安國臣;;LED驅(qū)動電源PFC電路的設(shè)計(jì)[J];電源技術(shù)應(yīng)用;2011年06期

4 侯典立;張慶范;張龍;劉曉;;含有PFC的LED驅(qū)動線路的改進(jìn)設(shè)計(jì)[J];電源學(xué)報(bào);2011年02期

5 趙相瑜;袁繼敏;王艷碩;;交錯(cuò)并聯(lián)Boost PFC電路的應(yīng)用研究[J];電力電子技術(shù);2010年01期

6 任凌,李思揚(yáng),王志強(qiáng);有源功率因數(shù)校正技術(shù)綜述[J];通信電源技術(shù);2005年04期

7 朱方明,余建剛;有源功率因數(shù)校正技術(shù)原理及應(yīng)用[J];現(xiàn)代電子技術(shù);2002年10期

8 華偉;通信開關(guān)電源的五種PWM反饋控制模式研究[J];通信電源技術(shù);2001年02期

9 毛鴻,吳兆麟;有源功率因數(shù)校正器的控制策略綜述[J];電力電子技術(shù);2000年01期

相關(guān)博士學(xué)位論文 前4條

1 賴力;數(shù)字式單相功率因數(shù)校正控制方法研究[D];電子科技大學(xué);2016年

2 楊飛;采用耦合電感的交錯(cuò)并聯(lián)Boost PFC變換器[D];南京航空航天大學(xué);2013年

3 姚凱;高功率因數(shù)DCM Boost PFC變換器的研究[D];南京航空航天大學(xué);2010年

4 潘飛蹊;有源功率因數(shù)校正技術(shù)的研究[D];電子科技大學(xué);2004年

相關(guān)碩士學(xué)位論文 前10條

1 趙子龍;降壓型功率因數(shù)校正的研究[D];遼寧工業(yè)大學(xué);2016年

2 嚴(yán)陽;單相軟開關(guān)高效率半橋功率因數(shù)校正器研究[D];浙江大學(xué);2016年

3 邱金燕;單周期控制的無橋式Sepic功率因數(shù)校正電路研究[D];大連理工大學(xué);2015年

4 陳建;高效率無橋Sepic功率因數(shù)校正變換器研究[D];西南交通大學(xué);2015年

5 龔秋憬;高增益低紋波單相功率因數(shù)校正電路的研究[D];重慶大學(xué);2015年

6 張通彤;基于降壓電路的有源功率因數(shù)校正技術(shù)研究[D];重慶大學(xué);2015年

7 張艷杰;單相有源功率因數(shù)校正電路的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2015年

8 裴冬斌;基于恒定導(dǎo)通時(shí)間的功率因數(shù)提高方法研究[D];西安電子科技大學(xué);2014年

9 耿煜;CCM模式功率因數(shù)校正電路的分析與設(shè)計(jì)[D];電子科技大學(xué);2014年

10 梅寒潔;一種功率因數(shù)校正(PFC)變換器數(shù)字控制方法的研究[D];浙江大學(xué);2014年



本文編號:1867198

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1867198.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7844d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com