局部陰影下光伏陣列輸出特性及最大功率追蹤的研究
發(fā)布時間:2018-05-07 09:33
本文選題:局部陰影 + 光伏發(fā)電。 參考:《華北電力大學》2017年碩士論文
【摘要】:傳統(tǒng)化石能源的大量使用,造成了環(huán)境污染以及資源枯竭等問題,使得光伏發(fā)電等新技術在能源結構中占有了日益重要的地位。作為光伏發(fā)電系統(tǒng)的重要技術環(huán)節(jié),光伏陣列的最大功率追蹤技術一直都是研究的熱點。但是,當光伏陣列處于局部陰影條件下時,其輸出特性曲線會出現(xiàn)多個功率極值點的情況,傳統(tǒng)的最大功率追蹤技術易陷于局部最優(yōu)值點,造成發(fā)電能量的浪費。因此,局部陰影下光伏陣列輸出特性及最大功率追蹤的研究,具有重要意義。本文首先闡述了光伏發(fā)電的研究背景和意義,詳細介紹了傳統(tǒng)最大功率追蹤技術的原理和優(yōu)缺點,并分析了國內(nèi)外關于MPPT技術的研究現(xiàn)狀。其次,分析了光伏電池的物理特性、工作原理和數(shù)學模型,以及最大功率追蹤所涉及到的功率變流器的工作原理。在MATLAB/Simulink中建立了單位光伏電池組件的仿真模型,基于因不同光照強度所造成的電池工作溫度差異,提出了仿真模型的局部改進策略,并驗證其合理性。然后,針對實際工作環(huán)境中,由積狀云層所造成的陰影遮蔽現(xiàn)象,進行了各種規(guī)模的光伏陣列在復雜陰影條件下的仿真。根據(jù)局部陰影條件下光伏陣列的輸出特性,對功率極值點的最大數(shù)目以及分布規(guī)律進行了詳細研究,并針對光伏陣列功率極值點出現(xiàn)和消失的原因進行了分析。最后,研究了常規(guī)粒子群算法的基本特性、原理以及設計流程,針對其收斂速度慢以及部分粒子易陷于局部最優(yōu)解的問題,將混沌算法與粒子群算法相結合,提出了一種改進混沌粒子群算法,并將其應用于局部陰影條件下最大功率追蹤的研究中,設計了基于改進混沌粒子群算法的最大功率追蹤策略。通過MATLAB編程的方式,針對光伏陣列在各種陰影條件下的輸出特性曲線進行仿真研究。結果表明,與常規(guī)粒子群算法相比,該方法能夠使粒子跳出局部極值點,準確、迅速地找到全局最大值點,并且能夠控制光伏陣列的輸出電壓穩(wěn)定在最大功率點電壓,證明了算法的優(yōu)越性和有效性,提高了光伏系統(tǒng)的發(fā)電效率。
[Abstract]:The extensive use of traditional fossil energy has caused environmental pollution and resource depletion, which makes photovoltaic power generation and other new technologies play an increasingly important role in the energy structure. As an important part of photovoltaic power generation system, the maximum power tracing technology of photovoltaic array is always a hot topic. However, when the photovoltaic array is in the condition of local shadow, the output characteristic curve of the photovoltaic array will have multiple power extremum points. The traditional maximum power tracing technology is prone to get into the local optimal point, resulting in the waste of power generation energy. Therefore, it is of great significance to study the output characteristics and maximum power tracking of photovoltaic arrays under local shadows. In this paper, the research background and significance of photovoltaic power generation are introduced, the principle, advantages and disadvantages of traditional maximum power tracking technology are introduced in detail, and the research status of MPPT technology at home and abroad is analyzed. Secondly, the physical characteristics, working principle and mathematical model of photovoltaic cell are analyzed, as well as the working principle of power converter involved in maximum power tracing. The simulation model of unit photovoltaic cell module is established in MATLAB/Simulink. Based on the difference of operating temperature caused by different light intensity, the local improvement strategy of the simulation model is proposed, and the rationality of the simulation model is verified. Then, aiming at the shadow shadowing phenomenon caused by the accumulated clouds in the actual working environment, the simulation of photovoltaic arrays of various sizes under complex shadow conditions is carried out. According to the output characteristics of photovoltaic array under the condition of local shadow, the maximum number and distribution of power extremum are studied in detail, and the reasons for the emergence and disappearance of power extremum of photovoltaic array are analyzed. Finally, the basic characteristics, principle and design flow of the conventional particle swarm optimization (PSO) algorithm are studied. The chaotic algorithm is combined with the PSO algorithm in view of the slow convergence rate and the local optimal solution of some particles. An improved chaotic particle swarm optimization (PSO) algorithm is proposed and applied to the study of maximum power tracking under local shadow conditions. The maximum power tracking strategy based on improved chaotic PSO algorithm is designed. The output characteristic curve of photovoltaic array under various shadow conditions is simulated by MATLAB programming. The results show that compared with the conventional particle swarm optimization algorithm, the proposed method can make the particle jump out of the local extremum, find the global maximum point accurately and quickly, and control the output voltage of the photovoltaic array to stabilize at the maximum power point voltage. The superiority and effectiveness of the algorithm are proved, and the efficiency of photovoltaic system is improved.
【學位授予單位】:華北電力大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM615
【參考文獻】
相關期刊論文 前10條
1 朱娟娟;王偉;喬焰;王月康;周海鵬;李e,
本文編號:1856392
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1856392.html
最近更新
教材專著