基于雙向LLC諧振變換器的電池正負脈沖充電研究
發(fā)布時間:2018-05-06 22:08
本文選題:動力電池 + 快速充電; 參考:《西安理工大學》2017年碩士論文
【摘要】:LLC諧振變換器為軟開關(guān)型電路拓撲,可實現(xiàn)逆變開關(guān)管的零電壓開通與整流開關(guān)管的零電流關(guān)斷,開關(guān)頻率可以設(shè)計的很高,且變換器能實現(xiàn)高效高功率密度的雙向工作。為了提高動力電池充電設(shè)備的充電效率及速度,本課題對基于全橋LLC諧振的雙向DC-DC變換器進行了研究,重點分析了 LLC諧振拓撲,對脈沖充電方法、模糊充電方法進行了仿真設(shè)計和仿真驗證。具體從以下方面開展了工作:首先針對提高電動汽車動力電池充電速度的問題,分析了動力電池的快速充電機理并對現(xiàn)有的快速充電方法的優(yōu)缺點進行研究,對充電過程中不可避免的極化現(xiàn)象進行分析,本文采用正負脈沖充電來去極化;對提高變換器的充電效率問題,針對雙向DC-DC拓撲電路并結(jié)合諧振拓撲的軟開關(guān)特性,采用正負脈沖中短暫的放電負脈沖來去極化,提高電源利用率且縮短了總的充電時間;以雙向全橋LLC諧振電路作為主電路,提出了以平滑脈沖充電曲線為改進目的的新型雙向全橋LLC拓撲結(jié)構(gòu)。另外,分析了雙向全橋LLC基本構(gòu)成網(wǎng)絡,建立了穩(wěn)態(tài)數(shù)學模型,研究了諧振槽參數(shù)變化對變換器增益特性的影響,研究了正負脈沖充電方法的移相控制和電壓電流雙閉環(huán)控制策略。在Simulink仿真環(huán)境下,建立雙向全橋LLC諧振變換器的仿真模型,進行了開、閉環(huán)情況下的正負脈沖充電仿真,驗證了改進后拓撲結(jié)構(gòu)能平緩脈沖充電電流,脈沖充電能量可回饋及充電所具有的快速性?紤]到電池離散性和非線性等特點,采用模糊控制,建立了電池模糊充電的Simulink仿真模型,仿真表明了模糊控制相比于傳統(tǒng)PI控制的優(yōu)越性。其次,采用DSP的TMS320F28335芯片作為全橋LLC諧振變換器的主控芯片,進行了數(shù)字變換器的設(shè)計,計算并選擇主電路元器件,設(shè)計了控制電路和部分軟件的流程。最后利用simulink-DSP聯(lián)合調(diào)制的Real-Time Workspace和CCS配置,在DSP中進行部分程序的調(diào)試。
[Abstract]:LLC resonant converter is a soft switching circuit topology. It can turn on zero voltage of inverter switch and switch off zero current of rectifier switch. The switching frequency can be designed very high, and the converter can realize high efficiency and high power density bi-directional operation. In order to improve the charging efficiency and speed of the power battery charging equipment, this paper studies the bi-directional DC-DC converter based on full-bridge LLC resonance, especially analyzes the LLC resonant topology, and discusses the pulse charging method. The fuzzy charging method is designed and verified by simulation. The main work is as follows: firstly, aiming at the problem of improving the charging speed of electric vehicle power battery, the mechanism of rapid charging of power battery is analyzed, and the advantages and disadvantages of the existing rapid charging methods are studied. The inevitable polarization phenomenon in charging process is analyzed in this paper, positive and negative pulse charging is used to depolarization, and to improve the charging efficiency of the converter, the bi-directional DC-DC topology circuit and the soft switching characteristics of resonant topology are combined. The short discharge and negative pulses in the positive and negative pulse are used to increase the power utilization rate and shorten the total charge time, and the bidirectional full-bridge LLC resonant circuit is used as the main circuit. A novel bi-directional full-bridge LLC topology is proposed for the purpose of smoothing the pulse charging curve. In addition, the basic network of bi-directional full-bridge LLC is analyzed, the steady state mathematical model is established, and the influence of resonant slot parameters on the gain characteristics of the converter is studied. The phase shift control and voltage and current double closed loop control strategy for positive and negative pulse charging are studied. In the Simulink simulation environment, the simulation model of bi-directional full-bridge LLC resonant converter is established, and the positive and negative pulse charging simulation is carried out under the condition of open and closed loop. It is verified that the improved topology can smooth the pulse charging current. Pulse charging energy can be fed back and charged quickly. Considering the characteristics of battery discreteness and nonlinearity, the Simulink simulation model of battery fuzzy charging is established by using fuzzy control. The simulation results show that the fuzzy control is superior to the traditional Pi control. Secondly, the DSP TMS320F28335 chip is used as the main control chip of the full-bridge LLC resonant converter. The digital converter is designed, the main circuit components are calculated and selected, and the control circuit and part of the software flow are designed. Finally, part of the program is debugged in DSP with the configuration of Real-Time Workspace and CCS modulated by simulink-DSP.
【學位授予單位】:西安理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM46;TM910
【參考文獻】
相關(guān)期刊論文 前10條
1 劉旭濤;賴小龍;衛(wèi)東;趙磊;王志文;;光伏發(fā)電系統(tǒng)鉛酸蓄電池快速充電研究[J];電源技術(shù);2016年12期
2 W毸,
本文編號:1854103
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1854103.html
最近更新
教材專著