大型交流電機定子換位線棒環(huán)流損耗與電磁力的數(shù)值分析
本文選題:交流電機 + 定子線棒。 參考:《哈爾濱理工大學(xué)》2017年博士論文
【摘要】:大型交流電機是電力生產(chǎn)中主要的電力設(shè)備,隨著經(jīng)濟發(fā)展和社會需要,對能源的安全、清潔和高效的要求也越來越高。隨著交流電機容量的不斷增大,電機各部件損耗隨之增加,尤其是定子線棒環(huán)流附加損耗增大導(dǎo)致線棒局部溫升過高愈加嚴(yán)重,股線局部電磁應(yīng)力變大,極大地威脅著電機安全運行和使用壽命。定子線棒換位方式多樣,運行中的線棒所處電磁場環(huán)境復(fù)雜,線棒環(huán)流附加損耗和換位股線之間電磁力密度難以進(jìn)行測量,定子換位線棒環(huán)流損耗和電磁力密度的準(zhǔn)確計算成為大型交流電機設(shè)計的關(guān)鍵問題。針對傳統(tǒng)解析算法計算定子線棒環(huán)流損耗不能具體反映局部電磁場分布的局限性,建立了一臺水內(nèi)冷汽輪發(fā)電機三維定子全域下的帶空換位段的540°不足換位定子線棒物理模型;引入空心股線等效建模方式并進(jìn)行換位線棒定子全域磁場的數(shù)值計算,計算出股線電流和環(huán)流損耗在左、右兩側(cè)換位股線組中的分布規(guī)律。根據(jù)定子線棒四排股線電流分布特點,提出一種雙周混合換位定子線棒及其換位方法,不僅減小了同等股線載流能力定子線棒的用銅量,而且有效地均衡了股線電流在整根定子線棒中的分布,減小了股線最大電流和線棒的環(huán)流損耗。通過實驗對定子換位線棒股線電流進(jìn)行測試,驗證了數(shù)值計算的準(zhǔn)確性。根據(jù)定子線棒換位結(jié)構(gòu)和股線截面沿軸向的分布特點,提出了一種計算大型交流電機定子換位線棒環(huán)流損耗的多截面場路耦合法;通過空間線性逼近的方法對定子線棒的換位結(jié)構(gòu)進(jìn)行模擬,簡化了換位線棒復(fù)雜的數(shù)值建模;結(jié)合場路耦合法和設(shè)置相應(yīng)邊界條件實現(xiàn)了定子線棒電磁場和電路的多截面耦合計算,減小了數(shù)值計算的規(guī)模,快速求解出換位線棒的漏磁場分布和股線電流分布。通過與三維有限元法計算出的磁密、電密、股線電流和感應(yīng)電動勢的計算結(jié)果作對比,驗證了多截面場路耦合法計算定子換位線棒環(huán)流損耗的有效性和高效性。通過分析股線換位結(jié)構(gòu),提出一種滿足剖分單元相似性要求的三維比例邊界元定子線棒剖分策略及相應(yīng)的環(huán)流損耗計算方法,解決了三維比例邊界元法在換位彎周圍空氣域單元剖分中存在的困難。通過與有限元法計算結(jié)果作對比,比例邊界元法的單元剖分方法既有效地克服了換位股線物理建模的困難,又大幅減小了單元剖分規(guī)模,計算結(jié)果較為吻合。根據(jù)洛倫茲力法計算了水內(nèi)冷汽輪發(fā)電機定子線棒換位股線的電磁力密度分布,研究了同相異相電流和不同換位因素對股線及換位彎沿定子軸向不同位置的徑向電磁力密度的分布及其影響規(guī)律;計算了不同換位方式對定子線棒單根股線徑向電磁合力的影響,明確了不同換位方式與徑向電磁力分布的關(guān)系,為定子線棒換位方式的優(yōu)化設(shè)計提供了理論依據(jù)。
[Abstract]:Large AC motor is the main power equipment in electric power production. With the development of economy and social needs, the requirements of energy security, cleanliness and efficiency are becoming higher and higher. With the increasing of AC motor capacity, the loss of all parts of the motor increases, especially the additional loss of stator bar leads to the higher local temperature rise and the greater local electromagnetic stress. It is a great threat to the safe operation and service life of the motor. The stator bar transposition mode is various, the electromagnetic field environment of the running wire rod is complex, the additional loss of the wire rod circulation and the electromagnetic force density between the transposition wire are difficult to be measured. The accurate calculation of circulating loss and electromagnetic force density of stator commutator rod becomes the key problem in the design of large AC motor. In view of the limitation that the traditional analytical algorithm can not reflect the distribution of local electromagnetic field, the physical model of 540 擄insufficient transposition stator bar with empty transposition section of a water-cooled turbine-generator in three dimensional stator domain is established. In this paper, the equivalent modeling method of hollow strand is introduced and the numerical calculation of the magnetic field of the stator of the commutated wire bar is carried out, and the distribution of the current and the circulation loss in the left and right sides of the transposition wire group is calculated. According to the characteristics of current distribution in four strands of stator bars, a two-cycle mixed transposition stator bar and its transposition method are proposed, which can not only reduce the amount of copper used in the stator bar with the same current carrying capacity. Moreover, the distribution of strand current in the whole stator bar is effectively balanced, and the maximum current of the strand and the circulation loss of the rod are reduced. The accuracy of numerical calculation is verified by measuring the current of stator transposition wire rod. According to the characteristics of stator bar transposition structure and the axial distribution of strand section, a multi-section field-circuit coupling method is proposed to calculate the circulating loss of stator commutated wire rod of large AC motor. The transposition structure of stator bar is simulated by spatial linear approximation method, which simplifies the complex numerical modeling of commutating wire rod. Combined with the field circuit coupling method and the corresponding boundary conditions, the multi-section coupling calculation of the stator bar electromagnetic field and the circuit is realized, the scale of the numerical calculation is reduced, and the leakage magnetic field distribution and the current distribution of the transposition wire rod are solved quickly. Compared with the calculated results of magnetic density, electric density, wire current and inductive electromotive force calculated by 3D finite element method, the effectiveness and efficiency of the multi-section field-circuit coupling method for calculating the circulation loss of stator commutated wire rod are verified. Based on the analysis of the transposition structure of the strands, this paper presents a new method for calculating the loss of the stator bar of the three dimensional proportional boundary element, which satisfies the similarity requirement of the subdivision elements. The difficulty of 3D proportional boundary element method in air element division around transposition bend is solved. Compared with the results of finite element method, the element partition method of proportional boundary element method not only overcomes the difficulty of physical modeling of transposition line, but also greatly reduces the scale of element partition. The calculated results are in good agreement with each other. Based on Lorentz force method, the electromagnetic force density distribution of stator bar transposition line of water-cooled turbogenerator is calculated. The distribution of radial electromagnetic force density along the stator axial direction and the influence of different transposition current and different transposition factors on the radial electromagnetic force density along the stator axis are studied. The influence of different transposition modes on the radial electromagnetic force of stator bar is calculated, and the relationship between different transposition modes and radial electromagnetic force distribution is clarified, which provides a theoretical basis for the optimization design of stator wire bar transposition mode.
【學(xué)位授予單位】:哈爾濱理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TM34
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁艷萍;柳楊;王晨光;;大型水輪發(fā)電機定子繞組新型組合換位方法分析[J];中國電機工程學(xué)報;2016年11期
2 暴艷利;鐘紅;林皋;;基于多邊形比例邊界有限元的重力壩地震斷裂模擬[J];水電能源科學(xué);2015年04期
3 萬書亭;姚肖方;豆龍江;;發(fā)電機定子繞組端部電磁力特性與鼻端扭矩計算[J];振動.測試與診斷;2014年05期
4 邊旭;梁艷萍;;交流電機換位線棒股線環(huán)流的解析計算方法[J];電機與控制學(xué)報;2014年08期
5 殷德勝;陳勝宏;王曉鋒;;基于SBFEM計算應(yīng)力強度因子的疊單元法[J];武漢大學(xué)學(xué)報(工學(xué)版);2014年03期
6 王毅;林皋;胡志強;;基于SBFEM的豎向地震重力壩動水壓力算法研究[J];振動與沖擊;2014年01期
7 稅航偉;董江偉;薛化冰;王正平;王玉芳;;大中型汽輪發(fā)電機定子線圈換位技術(shù)[J];上海大中型電機;2013年04期
8 鮑曉華;程曉巍;方勇;呂強;單麗;;大型異步電機定子端部繞組電磁力的研究[J];電機與控制學(xué)報;2013年10期
9 梁艷萍;邊旭;于鴻浩;劉鑫;李藏雪;;多線棒不完全換位定子繞組環(huán)流損耗的分析計算[J];中國電機工程學(xué)報;2013年24期
10 張耀明;屈文鎮(zhèn);陳正宗;;三維位勢問題新的規(guī)則化邊界元法[J];中國科學(xué):物理學(xué) 力學(xué) 天文學(xué);2013年03期
相關(guān)會議論文 前1條
1 王勇;蒿正偉;;用邊界元法求解三維電磁場本征問題[A];2007年全國微波毫米波會議論文集(上冊)[C];2007年
相關(guān)博士學(xué)位論文 前3條
1 劉士利;改進(jìn)的邊界元法及其在電場計算中的應(yīng)用[D];華北電力大學(xué)(北京);2011年
2 林志良;比例邊界有限元法及快速多極子邊界元法的研究與應(yīng)用[D];上海交通大學(xué);2010年
3 曹鳳帥;比例邊界有限元法在勢流理論中的應(yīng)用[D];大連理工大學(xué);2009年
相關(guān)碩士學(xué)位論文 前8條
1 李廣海;定子斜槽的泵用高壓感應(yīng)電機磁場與性能分析[D];哈爾濱理工大學(xué);2014年
2 姚肖方;汽輪發(fā)電機定子繞組端部受力特性分析[D];華北電力大學(xué);2013年
3 孫洋;1000MW水輪發(fā)電機渦流與環(huán)流損耗分析計算[D];哈爾濱理工大學(xué);2011年
4 單繼聰;大型汽輪發(fā)電機定子端部繞組電磁力的解析計算[D];浙江大學(xué);2008年
5 張甲;大型汽輪發(fā)電機端部繞組電動力三維有限元分析[D];浙江大學(xué);2008年
6 黃波;直線感應(yīng)電機的電磁力研究[D];西南交通大學(xué);2007年
7 劉海龍;大型感應(yīng)電動機電磁力及振動特性分析[D];沈陽工業(yè)大學(xué);2007年
8 鄧春華;三維靜電場高精度邊界元方法的研究[D];華北電力大學(xué)(北京);2007年
,本文編號:1830566
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1830566.html