大型交流電機(jī)定子換位線(xiàn)棒環(huán)流損耗與電磁力的數(shù)值分析
本文選題:交流電機(jī) + 定子線(xiàn)棒 ; 參考:《哈爾濱理工大學(xué)》2017年博士論文
【摘要】:大型交流電機(jī)是電力生產(chǎn)中主要的電力設(shè)備,隨著經(jīng)濟(jì)發(fā)展和社會(huì)需要,對(duì)能源的安全、清潔和高效的要求也越來(lái)越高。隨著交流電機(jī)容量的不斷增大,電機(jī)各部件損耗隨之增加,尤其是定子線(xiàn)棒環(huán)流附加損耗增大導(dǎo)致線(xiàn)棒局部溫升過(guò)高愈加嚴(yán)重,股線(xiàn)局部電磁應(yīng)力變大,極大地威脅著電機(jī)安全運(yùn)行和使用壽命。定子線(xiàn)棒換位方式多樣,運(yùn)行中的線(xiàn)棒所處電磁場(chǎng)環(huán)境復(fù)雜,線(xiàn)棒環(huán)流附加損耗和換位股線(xiàn)之間電磁力密度難以進(jìn)行測(cè)量,定子換位線(xiàn)棒環(huán)流損耗和電磁力密度的準(zhǔn)確計(jì)算成為大型交流電機(jī)設(shè)計(jì)的關(guān)鍵問(wèn)題。針對(duì)傳統(tǒng)解析算法計(jì)算定子線(xiàn)棒環(huán)流損耗不能具體反映局部電磁場(chǎng)分布的局限性,建立了一臺(tái)水內(nèi)冷汽輪發(fā)電機(jī)三維定子全域下的帶空換位段的540°不足換位定子線(xiàn)棒物理模型;引入空心股線(xiàn)等效建模方式并進(jìn)行換位線(xiàn)棒定子全域磁場(chǎng)的數(shù)值計(jì)算,計(jì)算出股線(xiàn)電流和環(huán)流損耗在左、右兩側(cè)換位股線(xiàn)組中的分布規(guī)律。根據(jù)定子線(xiàn)棒四排股線(xiàn)電流分布特點(diǎn),提出一種雙周混合換位定子線(xiàn)棒及其換位方法,不僅減小了同等股線(xiàn)載流能力定子線(xiàn)棒的用銅量,而且有效地均衡了股線(xiàn)電流在整根定子線(xiàn)棒中的分布,減小了股線(xiàn)最大電流和線(xiàn)棒的環(huán)流損耗。通過(guò)實(shí)驗(yàn)對(duì)定子換位線(xiàn)棒股線(xiàn)電流進(jìn)行測(cè)試,驗(yàn)證了數(shù)值計(jì)算的準(zhǔn)確性。根據(jù)定子線(xiàn)棒換位結(jié)構(gòu)和股線(xiàn)截面沿軸向的分布特點(diǎn),提出了一種計(jì)算大型交流電機(jī)定子換位線(xiàn)棒環(huán)流損耗的多截面場(chǎng)路耦合法;通過(guò)空間線(xiàn)性逼近的方法對(duì)定子線(xiàn)棒的換位結(jié)構(gòu)進(jìn)行模擬,簡(jiǎn)化了換位線(xiàn)棒復(fù)雜的數(shù)值建模;結(jié)合場(chǎng)路耦合法和設(shè)置相應(yīng)邊界條件實(shí)現(xiàn)了定子線(xiàn)棒電磁場(chǎng)和電路的多截面耦合計(jì)算,減小了數(shù)值計(jì)算的規(guī)模,快速求解出換位線(xiàn)棒的漏磁場(chǎng)分布和股線(xiàn)電流分布。通過(guò)與三維有限元法計(jì)算出的磁密、電密、股線(xiàn)電流和感應(yīng)電動(dòng)勢(shì)的計(jì)算結(jié)果作對(duì)比,驗(yàn)證了多截面場(chǎng)路耦合法計(jì)算定子換位線(xiàn)棒環(huán)流損耗的有效性和高效性。通過(guò)分析股線(xiàn)換位結(jié)構(gòu),提出一種滿(mǎn)足剖分單元相似性要求的三維比例邊界元定子線(xiàn)棒剖分策略及相應(yīng)的環(huán)流損耗計(jì)算方法,解決了三維比例邊界元法在換位彎周?chē)諝庥騿卧史种写嬖诘睦щy。通過(guò)與有限元法計(jì)算結(jié)果作對(duì)比,比例邊界元法的單元剖分方法既有效地克服了換位股線(xiàn)物理建模的困難,又大幅減小了單元剖分規(guī)模,計(jì)算結(jié)果較為吻合。根據(jù)洛倫茲力法計(jì)算了水內(nèi)冷汽輪發(fā)電機(jī)定子線(xiàn)棒換位股線(xiàn)的電磁力密度分布,研究了同相異相電流和不同換位因素對(duì)股線(xiàn)及換位彎沿定子軸向不同位置的徑向電磁力密度的分布及其影響規(guī)律;計(jì)算了不同換位方式對(duì)定子線(xiàn)棒單根股線(xiàn)徑向電磁合力的影響,明確了不同換位方式與徑向電磁力分布的關(guān)系,為定子線(xiàn)棒換位方式的優(yōu)化設(shè)計(jì)提供了理論依據(jù)。
[Abstract]:Large AC motor is the main power equipment in electric power production. With the development of economy and social needs, the requirements of energy security, cleanliness and efficiency are becoming higher and higher. With the increasing of AC motor capacity, the loss of all parts of the motor increases, especially the additional loss of stator bar leads to the higher local temperature rise and the greater local electromagnetic stress. It is a great threat to the safe operation and service life of the motor. The stator bar transposition mode is various, the electromagnetic field environment of the running wire rod is complex, the additional loss of the wire rod circulation and the electromagnetic force density between the transposition wire are difficult to be measured. The accurate calculation of circulating loss and electromagnetic force density of stator commutator rod becomes the key problem in the design of large AC motor. In view of the limitation that the traditional analytical algorithm can not reflect the distribution of local electromagnetic field, the physical model of 540 擄insufficient transposition stator bar with empty transposition section of a water-cooled turbine-generator in three dimensional stator domain is established. In this paper, the equivalent modeling method of hollow strand is introduced and the numerical calculation of the magnetic field of the stator of the commutated wire bar is carried out, and the distribution of the current and the circulation loss in the left and right sides of the transposition wire group is calculated. According to the characteristics of current distribution in four strands of stator bars, a two-cycle mixed transposition stator bar and its transposition method are proposed, which can not only reduce the amount of copper used in the stator bar with the same current carrying capacity. Moreover, the distribution of strand current in the whole stator bar is effectively balanced, and the maximum current of the strand and the circulation loss of the rod are reduced. The accuracy of numerical calculation is verified by measuring the current of stator transposition wire rod. According to the characteristics of stator bar transposition structure and the axial distribution of strand section, a multi-section field-circuit coupling method is proposed to calculate the circulating loss of stator commutated wire rod of large AC motor. The transposition structure of stator bar is simulated by spatial linear approximation method, which simplifies the complex numerical modeling of commutating wire rod. Combined with the field circuit coupling method and the corresponding boundary conditions, the multi-section coupling calculation of the stator bar electromagnetic field and the circuit is realized, the scale of the numerical calculation is reduced, and the leakage magnetic field distribution and the current distribution of the transposition wire rod are solved quickly. Compared with the calculated results of magnetic density, electric density, wire current and inductive electromotive force calculated by 3D finite element method, the effectiveness and efficiency of the multi-section field-circuit coupling method for calculating the circulation loss of stator commutated wire rod are verified. Based on the analysis of the transposition structure of the strands, this paper presents a new method for calculating the loss of the stator bar of the three dimensional proportional boundary element, which satisfies the similarity requirement of the subdivision elements. The difficulty of 3D proportional boundary element method in air element division around transposition bend is solved. Compared with the results of finite element method, the element partition method of proportional boundary element method not only overcomes the difficulty of physical modeling of transposition line, but also greatly reduces the scale of element partition. The calculated results are in good agreement with each other. Based on Lorentz force method, the electromagnetic force density distribution of stator bar transposition line of water-cooled turbogenerator is calculated. The distribution of radial electromagnetic force density along the stator axial direction and the influence of different transposition current and different transposition factors on the radial electromagnetic force density along the stator axis are studied. The influence of different transposition modes on the radial electromagnetic force of stator bar is calculated, and the relationship between different transposition modes and radial electromagnetic force distribution is clarified, which provides a theoretical basis for the optimization design of stator wire bar transposition mode.
【學(xué)位授予單位】:哈爾濱理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM34
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁艷萍;柳楊;王晨光;;大型水輪發(fā)電機(jī)定子繞組新型組合換位方法分析[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年11期
2 暴艷利;鐘紅;林皋;;基于多邊形比例邊界有限元的重力壩地震斷裂模擬[J];水電能源科學(xué);2015年04期
3 萬(wàn)書(shū)亭;姚肖方;豆龍江;;發(fā)電機(jī)定子繞組端部電磁力特性與鼻端扭矩計(jì)算[J];振動(dòng).測(cè)試與診斷;2014年05期
4 邊旭;梁艷萍;;交流電機(jī)換位線(xiàn)棒股線(xiàn)環(huán)流的解析計(jì)算方法[J];電機(jī)與控制學(xué)報(bào);2014年08期
5 殷德勝;陳勝宏;王曉鋒;;基于SBFEM計(jì)算應(yīng)力強(qiáng)度因子的疊單元法[J];武漢大學(xué)學(xué)報(bào)(工學(xué)版);2014年03期
6 王毅;林皋;胡志強(qiáng);;基于SBFEM的豎向地震重力壩動(dòng)水壓力算法研究[J];振動(dòng)與沖擊;2014年01期
7 稅航偉;董江偉;薛化冰;王正平;王玉芳;;大中型汽輪發(fā)電機(jī)定子線(xiàn)圈換位技術(shù)[J];上海大中型電機(jī);2013年04期
8 鮑曉華;程曉巍;方勇;呂強(qiáng);單麗;;大型異步電機(jī)定子端部繞組電磁力的研究[J];電機(jī)與控制學(xué)報(bào);2013年10期
9 梁艷萍;邊旭;于鴻浩;劉鑫;李藏雪;;多線(xiàn)棒不完全換位定子繞組環(huán)流損耗的分析計(jì)算[J];中國(guó)電機(jī)工程學(xué)報(bào);2013年24期
10 張耀明;屈文鎮(zhèn);陳正宗;;三維位勢(shì)問(wèn)題新的規(guī)則化邊界元法[J];中國(guó)科學(xué):物理學(xué) 力學(xué) 天文學(xué);2013年03期
相關(guān)會(huì)議論文 前1條
1 王勇;蒿正偉;;用邊界元法求解三維電磁場(chǎng)本征問(wèn)題[A];2007年全國(guó)微波毫米波會(huì)議論文集(上冊(cè))[C];2007年
相關(guān)博士學(xué)位論文 前3條
1 劉士利;改進(jìn)的邊界元法及其在電場(chǎng)計(jì)算中的應(yīng)用[D];華北電力大學(xué)(北京);2011年
2 林志良;比例邊界有限元法及快速多極子邊界元法的研究與應(yīng)用[D];上海交通大學(xué);2010年
3 曹鳳帥;比例邊界有限元法在勢(shì)流理論中的應(yīng)用[D];大連理工大學(xué);2009年
相關(guān)碩士學(xué)位論文 前8條
1 李廣海;定子斜槽的泵用高壓感應(yīng)電機(jī)磁場(chǎng)與性能分析[D];哈爾濱理工大學(xué);2014年
2 姚肖方;汽輪發(fā)電機(jī)定子繞組端部受力特性分析[D];華北電力大學(xué);2013年
3 孫洋;1000MW水輪發(fā)電機(jī)渦流與環(huán)流損耗分析計(jì)算[D];哈爾濱理工大學(xué);2011年
4 單繼聰;大型汽輪發(fā)電機(jī)定子端部繞組電磁力的解析計(jì)算[D];浙江大學(xué);2008年
5 張甲;大型汽輪發(fā)電機(jī)端部繞組電動(dòng)力三維有限元分析[D];浙江大學(xué);2008年
6 黃波;直線(xiàn)感應(yīng)電機(jī)的電磁力研究[D];西南交通大學(xué);2007年
7 劉海龍;大型感應(yīng)電動(dòng)機(jī)電磁力及振動(dòng)特性分析[D];沈陽(yáng)工業(yè)大學(xué);2007年
8 鄧春華;三維靜電場(chǎng)高精度邊界元方法的研究[D];華北電力大學(xué)(北京);2007年
,本文編號(hào):1830566
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1830566.html