高溫潛油永磁同步電機(jī)的設(shè)計(jì)研究
本文選題:高溫潛油永磁同步電機(jī) + 諧波含量 ; 參考:《沈陽(yáng)工業(yè)大學(xué)》2017年碩士論文
【摘要】:目前,在油田生產(chǎn)中對(duì)稠油的開采普遍使用蒸汽驅(qū)(SAGD)技術(shù)。開采時(shí)需要對(duì)其進(jìn)行加熱處理,與此同時(shí),潛油電泵所處的工作環(huán)境溫度也會(huì)隨之升高。較高的溫度會(huì)對(duì)電機(jī)的性能造成影響,使電機(jī)的溫升升高、效率下降,使用壽命也隨之降低。為了適應(yīng)高溫油井的開采,本次論文主要設(shè)計(jì)了一臺(tái)116型高溫潛油永磁同步電機(jī)。對(duì)于永磁電機(jī),氣隙的磁通分布對(duì)電機(jī)鐵心損耗及感應(yīng)電勢(shì)等電磁參數(shù)產(chǎn)生很大影響。對(duì)于非理想的正弦波氣隙磁場(chǎng)因含有較大的空間諧波會(huì)使得附加損耗增加,加劇電機(jī)發(fā)熱。諧波還會(huì)導(dǎo)致旋轉(zhuǎn)電機(jī)相繞組交鏈磁鏈波動(dòng),進(jìn)而引起相繞組反電勢(shì)波動(dòng)、相電流的脈動(dòng),致使電磁轉(zhuǎn)矩發(fā)生波動(dòng)。因此,削弱諧波含量對(duì)減少電機(jī)自身?yè)p耗,提高電機(jī)性能顯得十分重要。本文首先在永磁電機(jī)的基本電磁理論的基礎(chǔ)上,運(yùn)用ANSYS Maxwell有限元軟件分別對(duì)采用普通徑向充磁和分段Halbach充磁方式的潛油電機(jī)進(jìn)行了空載氣隙磁密、繞組反電勢(shì)以及負(fù)載電流、轉(zhuǎn)矩等參數(shù)進(jìn)行了仿真,并對(duì)相關(guān)曲線進(jìn)行傅里葉變換。通過(guò)對(duì)比分析選取性能較佳的方案作為本文電機(jī)的設(shè)計(jì)方案。其次,對(duì)所選電機(jī)的損耗進(jìn)行了計(jì)算,包括電機(jī)的繞組銅損、鐵損及機(jī)械損耗等。最后,依據(jù)熱力學(xué)分析基本理論,對(duì)潛油永磁電機(jī)建立了三維溫度場(chǎng)計(jì)算模型,給出電機(jī)各主要部件的等效換熱系數(shù)、導(dǎo)熱系數(shù)的計(jì)算方法,并設(shè)定求解域的初始和邊界條件。將所計(jì)算的損耗轉(zhuǎn)換成電機(jī)的熱生成率,運(yùn)用ANASY Workbench有限元軟件對(duì)工作環(huán)境溫度為200℃的潛油永磁電機(jī)進(jìn)行三維穩(wěn)態(tài)溫度場(chǎng)分析,得到電機(jī)內(nèi)部溫度場(chǎng)分布情況,并驗(yàn)證了電機(jī)設(shè)計(jì)的合理性。
[Abstract]:At present, the steam flooding (SAGD) technology is commonly used in the production of heavy oil in oil field production. It is necessary to heat the heavy oil during the mining. At the same time, the working environment temperature in the submersible electric pump will also increase. The higher temperature will affect the performance of the motor, and the temperature rise, the efficiency and the life of the electric machine will be reduced. In order to adapt to the exploitation of the high temperature oil well, this paper mainly designed a 116 type high temperature submersible permanent magnet synchronous motor. For permanent magnet motor, the flux distribution in the air gap has a great influence on the electromagnetic parameters such as the loss of the core and the induction potential. With the increase of loss, the motor heating is aggravated. The harmonic will also cause the fluctuation of the alternating chain magnetic chain of the phase winding of the rotating motor, and then cause the fluctuation of the reverse EMF of the phase winding and the fluctuation of the phase current. Therefore, it is very important to weaken the harmonic content to reduce the loss of the motor and improve the performance of the electric machine. On the basis of the basic electromagnetic theory, the ANSYS Maxwell finite element software is used to simulate the air gap magnetic density, the back EMF of the winding, the load current and the torque, and the Fourier transform of the phase curve. A scheme with better performance is taken as the design scheme of this motor. Secondly, the loss of the selected motor is calculated, including the copper loss, iron loss and mechanical loss of the motor. Finally, based on the basic thermodynamic analysis theory, a three-dimensional temperature field calculation model is established for the submersible permanent magnet motor, and the equivalent heat transfer of the main components of the motor is given. The calculation method of coefficient and thermal conductivity is used, and the initial and boundary conditions of the domain are set. The calculated loss is converted into the heat generation rate of the motor. The ANASY Workbench finite element software is used to analyze the three-dimensional steady temperature field of the submersible permanent magnet motor with the working environment temperature of 200 c, and the distribution of the temperature field inside the motor is obtained. The reasonableness of the motor design is proved.
【學(xué)位授予單位】:沈陽(yáng)工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM341
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 唐勇斌;郝曉宇;揭軍;周晶晶;;耐高溫永磁電機(jī)發(fā)展現(xiàn)狀與關(guān)鍵技術(shù)[J];導(dǎo)航定位與授時(shí);2016年02期
2 崔俊國(guó);肖文生;喻高遠(yuǎn);王宏敏;司國(guó)琛;;潛油永磁同步電機(jī)國(guó)內(nèi)外研究進(jìn)展[J];電機(jī)與控制應(yīng)用;2015年03期
3 崔俊國(guó);肖文生;黃紅勝;黃久嶺;吳曉東;;不同極槽配合潛油直驅(qū)永磁電機(jī)性能研究[J];微特電機(jī);2014年11期
4 安士忠;張?zhí)禧?蔣成保;;高性能抗氧化SmCo高溫永磁材料[J];航空學(xué)報(bào);2014年10期
5 蔡淑蘭;;潛油電機(jī)驅(qū)動(dòng)采油技術(shù)的發(fā)展[J];化學(xué)工程與裝備;2014年10期
6 張炳義;劉忠奇;楊帥;馮桂宏;;潛油螺桿泵直驅(qū)單元組合超細(xì)長(zhǎng)永磁電機(jī)研究[J];石油機(jī)械;2014年05期
7 徐永明;孟大偉;沙亮;;潛油電機(jī)設(shè)計(jì)方法研究及驗(yàn)證[J];電機(jī)與控制學(xué)報(bào);2012年07期
8 高波;吳廣寧;曹開江;羅楊;王鵬;崔易;;基于介電譜分析聚酰亞胺薄膜的老化特征[J];絕緣材料;2011年06期
9 孟大偉;劉宇蕾;張慶軍;徐永明;;潛油電機(jī)整體三維溫度場(chǎng)耦合計(jì)算與分析[J];電機(jī)與控制學(xué)報(bào);2010年01期
10 張輝;;高溫油井中潛油電泵機(jī)組的故障原因分析[J];裝備制造技術(shù);2009年11期
,本文編號(hào):1784166
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1784166.html