基于弱磁升速的永磁同步電機(jī)調(diào)速系統(tǒng)研究
本文選題:永磁同步電機(jī) + 直接轉(zhuǎn)矩控制 ; 參考:《蘭州交通大學(xué)》2017年碩士論文
【摘要】:PMSM(Permanent Magnet Sychronous Motor,永磁同步電機(jī))體積小、效率高、功率密度大、結(jié)構(gòu)簡(jiǎn)單、且更為節(jié)約能源,所以PMSM在工業(yè)、交通、軍事、航空等重要領(lǐng)域應(yīng)用廣泛。在采用電壓源型逆變器的電機(jī)驅(qū)動(dòng)系統(tǒng)中,弱磁控制的實(shí)質(zhì)是在電機(jī)的端電壓值不斷升高,且升高到逆變器直流側(cè)電壓允許輸出的最大值后,采取一定方式減弱電機(jī)磁場(chǎng)繼而使轉(zhuǎn)速能夠繼續(xù)升高來(lái)滿足PMSM在寬調(diào)速范圍內(nèi)運(yùn)行。由于對(duì)PMSM弱磁控制的研究能更好地發(fā)揮電機(jī)的效率,因而今日成為了研究領(lǐng)域的一個(gè)重要課題。本文針對(duì)PMSM在DTC(Direct Torque Control,直接轉(zhuǎn)矩控制)下的弱磁控制系統(tǒng),當(dāng)轉(zhuǎn)速和負(fù)載發(fā)生變化時(shí),產(chǎn)生的擾動(dòng)對(duì)電機(jī)會(huì)產(chǎn)生一定的影響,做了相應(yīng)研究。DTC系統(tǒng)雖然響應(yīng)較快,但存在轉(zhuǎn)矩脈動(dòng)大的缺點(diǎn),近些年在電機(jī)控制領(lǐng)域又出現(xiàn)了一種引起廣泛重視的控制方式—FCS-MPC(Finite Control Set Model Predictive Control,有限集模型預(yù)測(cè)控制)。FCS-MPC具有較強(qiáng)約束處理能力,并能將存在的非線性因素都考慮進(jìn)來(lái)使得轉(zhuǎn)矩波紋更小。本文的研究?jī)?nèi)容主要分為以下幾個(gè)方面:(1)在進(jìn)行文獻(xiàn)調(diào)研后,對(duì)PMSM當(dāng)前存在的幾種控制方法進(jìn)行了總結(jié)歸納,并詳細(xì)介紹了每種方法存在的優(yōu)缺點(diǎn),結(jié)合PMSM的的結(jié)構(gòu)特點(diǎn)采取利用FCS-MPC控制方法來(lái)改善控制系統(tǒng)。(2)PMSM的幾種坐標(biāo)變換方法、PMSM的弱磁基本原理和幾種控制方法,并詳細(xì)分析每種弱磁控制方式的優(yōu)缺點(diǎn)。(3)為了更好地減少PMSM在弱磁升速的過程中由于負(fù)載轉(zhuǎn)矩變化而給電機(jī)帶來(lái)的擾動(dòng),提出了采用MPC控制系統(tǒng),結(jié)合DTC下的弱磁控制方法,將DTC下的弱磁控制方法和MPC控制系統(tǒng)結(jié)合。在Matlab/Simulink建立系統(tǒng)的仿真模型,并對(duì)仿真結(jié)果進(jìn)行對(duì)比分析。(4)由于PMSM在速度發(fā)生變化時(shí)可以視為對(duì)PMSM產(chǎn)生的一種擾動(dòng),提出了采用ADRC(Active Disturbance Rejection Control,自抗擾控制)速度調(diào)節(jié)器來(lái)減小因?yàn)镻MSM速度變化而帶來(lái)的干擾。設(shè)計(jì)了MPC下基于ADRC速度調(diào)節(jié)器的PMSM弱磁控制系統(tǒng),在Matlab/Simulink下建立了系統(tǒng)仿真模型。并對(duì)DTC控制系統(tǒng)下基于PI速度調(diào)節(jié)器和基于ADRC速度調(diào)節(jié)器的PMSM弱磁控制系統(tǒng)效果進(jìn)行比較分析,同時(shí)還比較分析了MPC控制系統(tǒng)下基于PI速度調(diào)節(jié)器和基于ADRC速度調(diào)節(jié)器的PMSM弱磁控制系統(tǒng),仿真結(jié)果說(shuō)明基于ADRC速度調(diào)節(jié)器的MPC下PMSM弱磁控制系統(tǒng)在速度和負(fù)載發(fā)生變化時(shí)具有更好的魯棒性。
[Abstract]:PMSM(Permanent Magnet Sychronous Motor (PMSM) is small in size, high in efficiency, high in power density, simple in structure and more energy efficient, so PMSM is widely used in industry, transportation, military, aviation and other important fields.In the motor drive system with voltage source inverter, the essence of the weak magnetic field control is that the terminal voltage of the motor increases continuously and reaches the maximum output of the DC side voltage of the inverter.The motor magnetic field is weakened in a certain way so that the speed can continue to rise to meet the requirements of PMSM running in a wide speed range.Because the research of PMSM weak magnetic field control can make better use of the efficiency of the motor, it has become an important subject in the field of research today.In this paper, for the weak magnetic field control system of PMSM under DTC(Direct Torque Control (DTC), when the speed and load change, the disturbance will have a certain effect on the motor.In recent years, a kind of control mode -FCS-MPC-Finite Control Set Model Predictive control has appeared in the field of motor control. The finite set model predictive control has strong constraint processing ability.And the nonlinear factors can be taken into account to make the torque ripple smaller.The research contents of this paper are divided into the following aspects: 1) after literature research, several control methods existing in PMSM are summarized, and the advantages and disadvantages of each method are introduced in detail.According to the structural characteristics of PMSM, several coordinate transformation methods are adopted to improve the control system by using FCS-MPC control method. The basic principle of weak magnetic field and several control methods of PMSM are discussed.The advantages and disadvantages of each weak magnetic control mode are analyzed in detail. In order to reduce the disturbance to the motor caused by the change of the load torque in the course of the weak magnetic field acceleration, a MPC control system is proposed, which is combined with the weak magnetic field control method under the DTC, in order to reduce the disturbance to the motor due to the change of the load torque in the process of the weak magnetic field raising.The weak magnetic field control method under DTC is combined with the MPC control system.The simulation model of the system is established in Matlab/Simulink, and the simulation results are compared and analyzed. (4) because the PMSM can be regarded as a disturbance to the PMSM when the speed changes,In this paper, ADRC(Active Disturbance Rejection Control (ADRC) speed regulator is proposed to reduce the interference caused by the change of PMSM speed.The PMSM weak magnetic control system based on ADRC speed regulator under MPC is designed, and the system simulation model is established under Matlab/Simulink.The effect of PMSM weak magnetic field control system based on Pi speed regulator and ADRC speed regulator under DTC control system is compared and analyzed.At the same time, the PMSM weak magnetic field control system based on Pi speed regulator and ADRC speed regulator under MPC control system is compared and analyzed.The simulation results show that the PMSM weak magnetic field control system based on ADRC speed regulator has better robustness when the speed and load change under MPC.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM341
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 夏長(zhǎng)亮;張?zhí)煲?周湛清;張國(guó)政;史婷娜;;結(jié)合開關(guān)表的三電平逆變器永磁同步電機(jī)模型預(yù)測(cè)轉(zhuǎn)矩控制[J];電工技術(shù)學(xué)報(bào);2016年20期
2 左月飛;張捷;劉闖;張濤;;基于自抗擾控制的永磁同步電機(jī)位置伺服系統(tǒng)一體化設(shè)計(jì)[J];電工技術(shù)學(xué)報(bào);2016年11期
3 安群濤;孫力;孫立志;;新型開放式繞組永磁同步電機(jī)矢量控制系統(tǒng)研究[J];中國(guó)電機(jī)工程學(xué)報(bào);2015年22期
4 周長(zhǎng)攀;蘇健勇;楊貴杰;楊金波;;基于雙零序電壓注入PWM策略的雙三相永磁同步電機(jī)矢量控制[J];中國(guó)電機(jī)工程學(xué)報(bào);2015年10期
5 王永興;溫旭輝;趙峰;;多相永磁同步電機(jī)多維優(yōu)化矢量控制[J];中國(guó)電機(jī)工程學(xué)報(bào);2015年10期
6 滕青芳;柏建勇;朱建國(guó);郭有光;;基于滑模模型參考自適應(yīng)觀測(cè)器的無(wú)速度傳感器三相永磁同步電機(jī)模型預(yù)測(cè)轉(zhuǎn)矩控制[J];控制理論與應(yīng)用;2015年02期
7 王東文;李崇堅(jiān);吳堯;佟寧澤;;永磁同步電機(jī)的模型預(yù)測(cè)電流控制器研究[J];電工技術(shù)學(xué)報(bào);2014年S1期
8 劉英培;栗然;梁海平;;基于最小二乘支持向量機(jī)優(yōu)化自抗擾控制器的永磁同步電機(jī)直接轉(zhuǎn)矩控制方法[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年27期
9 高宏偉;楊貴杰;劉劍;;三次諧波注入式五相永磁同步電機(jī)矢量控制策略[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年24期
10 蓋江濤;黃慶;黃守道;劉旺;周滔滔;潘小清;;基于模型補(bǔ)償?shù)挠来磐诫姍C(jī)自抗擾控制[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2014年04期
相關(guān)博士學(xué)位論文 前5條
1 樊明迪;永磁同步電機(jī)直接轉(zhuǎn)矩控制技術(shù)研究[D];西北工業(yè)大學(xué);2014年
2 張曉光;永磁同步電機(jī)調(diào)速系統(tǒng)滑模變結(jié)構(gòu)控制若干關(guān)鍵問題研究[D];哈爾濱工業(yè)大學(xué);2014年
3 劉清;基于自抗擾控制器的永磁同步電機(jī)伺服系統(tǒng)控制策略的研究及實(shí)現(xiàn)[D];天津大學(xué);2011年
4 孫凱;自抗擾控制策略在永磁同步電動(dòng)機(jī)伺服系統(tǒng)中的應(yīng)用研究與實(shí)現(xiàn)[D];天津大學(xué);2007年
5 尹華杰;主軸永磁同步電機(jī)電磁結(jié)構(gòu)及“弱磁”問題的研究[D];華中理工大學(xué);1994年
相關(guān)碩士學(xué)位論文 前2條
1 趙明航;永磁同步電機(jī)弱磁控制技術(shù)研究[D];沈陽(yáng)工業(yè)大學(xué);2016年
2 胡蓉;基于滑模觀測(cè)器的永磁同步電機(jī)矢量控制研究[D];西南交通大學(xué);2014年
,本文編號(hào):1760070
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1760070.html