分布式電能計(jì)量誤差檢測(cè)系統(tǒng)的同步信號(hào)源研制
本文選題:GPS同步源 + FFT; 參考:《南昌航空大學(xué)》2017年碩士論文
【摘要】:在這個(gè)高度信息化的時(shí)代,人們的生活已經(jīng)離不開(kāi)電的供應(yīng),為了保證消費(fèi)者和電力部門(mén)各自的利益,變電站對(duì)電能的精準(zhǔn)計(jì)量至關(guān)重要,所以需要對(duì)變電站進(jìn)行計(jì)量誤差校驗(yàn)。新型的數(shù)字化變電站由電壓合并單元、電流合并單元和數(shù)字電能表組成,彼此之間距離較遠(yuǎn),傳統(tǒng)的校驗(yàn)裝置很難對(duì)其進(jìn)行校驗(yàn)。新型的分布式電能計(jì)量誤差檢測(cè)系統(tǒng)采用分布式的標(biāo)準(zhǔn)源,十分適合對(duì)此類(lèi)新型變電站進(jìn)行校驗(yàn)。然而由于國(guó)內(nèi)數(shù)字化變電站的建設(shè)剛剛起步,類(lèi)似這種的校驗(yàn)裝置不多,所以對(duì)分布式電能計(jì)量誤差檢測(cè)系統(tǒng)的研究對(duì)我國(guó)數(shù)字化電站的建設(shè)有著積極的推動(dòng)作用和重要意義。本課題所研究的是分布式電能誤差檢測(cè)系統(tǒng)的同步信號(hào)源,是分布式電能計(jì)量誤差檢測(cè)系統(tǒng)的核心組成部分。本課題設(shè)計(jì)并研制出分布式電能計(jì)量誤差檢測(cè)系統(tǒng)的同步源,該同步源采用GPS同步技術(shù)進(jìn)行時(shí)間同步,利用無(wú)線WiFi通信技術(shù)進(jìn)行組網(wǎng)通信。同步源單臺(tái)工作可同時(shí)輸出三相標(biāo)準(zhǔn)電壓、電流信號(hào),適用于對(duì)傳統(tǒng)變電站的校驗(yàn),同時(shí)可以采用兩臺(tái)同步源,分別輸出標(biāo)準(zhǔn)電壓、電流信號(hào),適用于對(duì)采用分布式合并單元的數(shù)字化變電站校驗(yàn)。同步源實(shí)現(xiàn)了對(duì)輸出信號(hào)的幅值、相角以及頻率的準(zhǔn)確調(diào)節(jié),實(shí)現(xiàn)了對(duì)輸出信號(hào)的量程切換,可以對(duì)輸出故障進(jìn)行處理,同時(shí)可以將實(shí)時(shí)輸出狀態(tài)和工作模式在液晶顯示器上進(jìn)行顯示。同步源整體采用多ARM架構(gòu),分為波形CPU、通信CPU和采樣CPU,CPU間采用雙口RAM進(jìn)行數(shù)據(jù)傳輸。其中,波形CPU通過(guò)查詢(xún)36萬(wàn)點(diǎn)的原始正弦表,配合16位高速DA芯片DAC8820產(chǎn)生原始標(biāo)準(zhǔn)信號(hào);通信CPU通過(guò)驅(qū)動(dòng)100M物理芯片DP83848和高速以太網(wǎng)轉(zhuǎn)WiFi模塊,利用lwip協(xié)議實(shí)現(xiàn)無(wú)線組網(wǎng)通信;采樣CPU采用高速高精度AD芯片ADS8568對(duì)輸出信號(hào)實(shí)時(shí)同步采樣,使用FFT對(duì)采樣結(jié)果進(jìn)行解算,得到輸出信號(hào)的幅頻和相頻特性。本文首先從課題的研究背景和意義出發(fā),說(shuō)明了課題研究的必要性,分析了這一領(lǐng)域國(guó)內(nèi)外研究的現(xiàn)狀,并在結(jié)構(gòu)上對(duì)整個(gè)論文作了安排,第二章介紹了課題研究所涉及到的理論知識(shí)和相關(guān)算法,包括分布式電能計(jì)量誤差檢測(cè)方法、FFT算法和PID算法等。第三章對(duì)系統(tǒng)的硬件設(shè)計(jì)進(jìn)行了詳細(xì)的介紹,第四章對(duì)系統(tǒng)軟件設(shè)計(jì)流程進(jìn)行了闡述。然后介紹了樣機(jī)軟硬件的調(diào)試情況,對(duì)樣機(jī)的相關(guān)測(cè)試數(shù)據(jù)進(jìn)行了分析。文章最后針對(duì)系統(tǒng)還存在的一些不足之處,提出了自己的意見(jiàn)和改進(jìn)措施。
[Abstract]:In this highly information age, people's lives have been inseparable from the supply of electricity. In order to ensure the respective interests of consumers and power departments, substation is very important to accurate measurement of electric energy.So it is necessary to check the metering error of substation.The new digital substation is composed of voltage combining unit, current combining unit and digital watt-hour meter.The new distributed electric energy metering error detection system adopts distributed standard source, which is very suitable for checking this kind of new substation.However, the construction of domestic digital substation is just beginning, and there are not many similar calibration devices, so the research of distributed electric energy measurement error detection system has a positive role and important significance to the construction of digital power station in our country.In this paper, the synchronous signal source of distributed power error detection system is studied, which is the core component of distributed power measurement error detection system.This paper designs and develops a synchronous source of distributed electric energy measurement error detection system. The synchronous source uses GPS synchronization technology to synchronize time and wireless WiFi communication technology to network communication.A single synchronous source can output three-phase standard voltage and current signals at the same time, which is suitable for checking traditional substations. At the same time, two synchronous sources can be used to output standard voltage and current signals respectively.It is suitable for verification of digital substation using distributed merging unit.The synchronous source realizes the accurate adjustment of the amplitude, phase angle and frequency of the output signal, realizes the range switching of the output signal, and can deal with the output fault.At the same time, the real-time output state and working mode can be displayed on the LCD.The synchronous source adopts multi-CPU architecture, which is divided into waveform CPU. The communication CPU and the sampled CPU CPU use dual-port RAM to transmit data.Among them, the waveform CPU generates the original standard signal by querying the original sinusoidal table of 360000 points, cooperating with 16-bit high speed DA chip DAC8820 to generate the original standard signal, and the communication CPU realizes wireless network communication by driving 100m physical chip DP83848 and high-speed Ethernet to WiFi module, using lwip protocol.High-speed and high-precision AD chip ADS8568 is used in sampling CPU to synchronize the output signal in real time, and FFT is used to calculate the sampling result. The amplitude and phase frequency characteristics of the output signal are obtained.This paper first explains the necessity of the research from the background and significance of the research, analyzes the present situation of the research at home and abroad in this field, and arranges the whole paper structurally.The second chapter introduces the theoretical knowledge and related algorithms involved in the research, including the distributed energy measurement error detection methods, such as FFT algorithm and PID algorithm.In the third chapter, the hardware design of the system is introduced in detail, and the software design flow is described in the fourth chapter.Then introduced the debugging of the prototype software and hardware, and analyzed the test data of the prototype.Finally, aiming at some shortcomings of the system, some suggestions and improvement measures are put forward.
【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM933.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 夏炎;馬家辰;;自適應(yīng)PID在網(wǎng)絡(luò)化控制系統(tǒng)中的應(yīng)用[J];信息技術(shù);2017年03期
2 房緒鵬;李輝;莊見(jiàn)偉;徐飛;;基于DSP+ARM的電能質(zhì)量檢測(cè)儀的設(shè)計(jì)[J];現(xiàn)代電子技術(shù);2017年04期
3 朱夢(mèng)銀;王可昕;孟盛;翟心蝶;高子翔;;基于GPU的GPS信號(hào)捕獲算法設(shè)計(jì)與實(shí)現(xiàn)[J];信息通信;2016年11期
4 謝小榮;王銀;劉華坤;賀靜波;徐振宇;;電力系統(tǒng)次同步和超同步諧波相量的檢測(cè)方法[J];電力系統(tǒng)自動(dòng)化;2016年21期
5 穆小星;;數(shù)字化電能表檢測(cè)與“溯源”系統(tǒng)解決方案研究[J];計(jì)算機(jī)測(cè)量與控制;2016年10期
6 黃志;張峰;張士文;楊月仲;;一種基于FPGA的電能計(jì)量算法研究[J];電測(cè)與儀表;2016年15期
7 畢偉;甘依依;申莉;;基于GPS同步信號(hào)源的分布式電能計(jì)量檢測(cè)系統(tǒng)[J];電測(cè)與儀表;2016年S1期
8 張蕾;樊芊;喻鳴;;基于雙口RAM的大數(shù)據(jù)量信號(hào)的通信技術(shù)[J];信息通信;2016年04期
9 潘宇婷;陳宇晨;王承宇;侯昀;;基于GPS授時(shí)的電網(wǎng)頻率測(cè)量技術(shù)的研究[J];電源技術(shù);2016年03期
10 慕呈祥;夏立;王黎明;左文;;基于WiFi的無(wú)線傳輸系統(tǒng)在電網(wǎng)監(jiān)測(cè)中的應(yīng)用[J];艦船電子工程;2016年01期
相關(guān)博士學(xué)位論文 前1條
1 趙巖;電能計(jì)量的低功耗集成電路實(shí)現(xiàn)及采樣方法研究[D];浙江大學(xué);2014年
相關(guān)碩士學(xué)位論文 前8條
1 蔣淦華;便攜式多功能同步測(cè)量裝置的研制[D];南昌航空大學(xué);2016年
2 吳志鵬;數(shù)字繼電保護(hù)測(cè)試儀檢測(cè)系統(tǒng)的數(shù)據(jù)采集裝置研制[D];南昌航空大學(xué);2016年
3 李剛;電能質(zhì)量分析儀中同步采樣方法及電參數(shù)檢測(cè)研究與實(shí)現(xiàn)[D];電子科技大學(xué);2016年
4 戴慧芳;基于準(zhǔn)同步采樣算法的動(dòng)態(tài)諧波分析方法研究[D];湖南大學(xué);2016年
5 韓玉強(qiáng);智能電網(wǎng)衛(wèi)星同步時(shí)鐘的誤差分析與修正方法研究[D];華北電力大學(xué)(北京);2016年
6 劉春雷;基于非同步采樣電網(wǎng)參數(shù)測(cè)量算法研究[D];電子科技大學(xué);2015年
7 李森林;實(shí)時(shí)以太網(wǎng)技術(shù)提升數(shù)字化變電站過(guò)程層通信性能的研究[D];山東大學(xué);2013年
8 姚旭成;高精度GPS同步交流信號(hào)源的研制[D];南昌航空大學(xué);2013年
,本文編號(hào):1751004
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1751004.html