生物多糖纖維基鋰離子電池隔膜的制備及其性能研究
本文選題:海藻酸鈣纖維 + 纖維素纖維; 參考:《青島大學(xué)》2017年碩士論文
【摘要】:鋰離子電池由于其能量密度高、工作電壓高而又環(huán)保等突出的優(yōu)點(diǎn)在電子類產(chǎn)品中被廣泛應(yīng)用。電池隔膜是鋰離子電池結(jié)構(gòu)中的重要組成之一,在提高鋰離子電池的安全性能以及降低成本上,隔膜發(fā)揮著重要的作用。本論文中以生物多糖纖維(海藻酸鈣纖維和纖維素纖維)為主要原料制備了高安全性和高電池容量的鋰離子電池隔膜。(1)通過(guò)抄紙技術(shù)制備了生物多糖纖維基鋰離子電池復(fù)合隔膜,對(duì)隔膜的透氣性、吸液率等物理性質(zhì)的表征,結(jié)果表明制備的復(fù)合隔膜與電解液具有較好的浸潤(rùn)效果。通過(guò)對(duì)隔膜進(jìn)行極限氧指數(shù)測(cè)試(LOI)、差熱分析法(DTA)以及在不同溫度下的收縮形貌的表征,隔膜在較高的溫度下不會(huì)出現(xiàn)熱收縮的現(xiàn)象,對(duì)提高隔膜的安全性有突破性的進(jìn)步。復(fù)合隔膜組成的電池后其離子電導(dǎo)率在1.22×10-3 S/cm左右,相對(duì)于Celgard 2500(PP)隔膜的離子電導(dǎo)率(0.17×10-3 S/cm)較高,并且復(fù)合隔膜的內(nèi)阻相對(duì)較低,電化學(xué)窗口測(cè)試發(fā)現(xiàn)復(fù)合隔膜的電化學(xué)窗口在4.5 V左右。復(fù)合隔膜組成的磷酸鐵鋰半電池,具有較高的放電容量、較好的長(zhǎng)循環(huán)和倍率循環(huán)性能,有利于獲得大容量的鋰離子電池。(2)通過(guò)納米無(wú)機(jī)材料(Al_2O_3和SiO_2)涂覆這種方式對(duì)70%海藻酸鈣纖維含量復(fù)合隔膜(70%AlgF)進(jìn)行改性,發(fā)現(xiàn)改性后的隔膜其孔隙率降低、強(qiáng)度提高(未涂覆的隔膜的強(qiáng)度的4倍),并且其熱穩(wěn)定性更好.(3)通過(guò)前面的探究發(fā)現(xiàn),在復(fù)合隔膜中海藻酸鈣纖維含量越高,隔膜的電化學(xué)性能越好。通過(guò)添加可溶性海藻酸鹽(海藻酸鈉和海藻酸鎂)作為粘結(jié)劑來(lái)制備海藻酸鈣纖維隔膜,結(jié)果發(fā)現(xiàn)隔膜孔徑變小,纖維之間的結(jié)合力增強(qiáng),隔膜的強(qiáng)度有了顯著的提高。通過(guò)測(cè)試電化學(xué)窗口測(cè)試發(fā)現(xiàn),隔膜電化學(xué)窗口為5 V,并且其組成電池后電池容量較高。
[Abstract]:Lithium ion batteries are widely used in electronic products because of their high energy density, high working voltage and environmental protection.Battery diaphragm is one of the most important components in lithium-ion battery structure. It plays an important role in improving the safety performance and reducing the cost of lithium-ion battery.In this paper, the lithium-ion battery separator with high safety and high battery capacity was prepared from biopolysaccharide fiber (calcium alginate fiber and cellulose fiber). The lithium-ion separation based on biopolysaccharide fiber was prepared by paper-making technique.Subbattery composite diaphragm,The physical properties of the membrane, such as gas permeability and liquid absorption rate, were characterized. The results showed that the composite membrane and electrolyte had better wetting effect.By means of limiting oxygen index (Oi) test, differential thermal analysis (DTA) and the characterization of shrinkage morphology at different temperatures, the thermal shrinkage of the diaphragm is not observed at higher temperature, which is a breakthrough in improving the safety of the diaphragm.The ionic conductivity of the composite membrane was about 1.22 脳 10 ~ (-3) S/cm, which was higher than that of the Celgard 2500p / m membrane (0.17 脳 10 ~ (-3) S / cm), and the internal resistance of the composite membrane was relatively low.Electrochemical window test showed that the electrochemical window of composite diaphragm was about 4.5 V.The composite membrane of lithium iron phosphate battery has high discharge capacity, good performance of long cycle and rate cycle.It was found that the modified membrane with 70% calcium alginate fiber content was modified by using nano-inorganic materials such as Als _ 2O _ 3 and Sio _ 2), and the porosity of the modified membrane was lower than that of the modified membrane.The results show that the higher the content of calcium alginate fiber in the composite membrane, the better the electrochemical performance of the membrane. The higher the strength is (4 times of the strength of the uncoated membrane, and the better the thermal stability of the membrane is, the higher the content of calcium alginate fiber in the composite membrane is, the higher the content of calcium alginate fiber is).Calcium alginate fiber separator was prepared by adding soluble alginate (sodium alginate and magnesium alginate) as binder. The results showed that the pore size of the membrane became smaller and the adhesion between the fibers increased, and the strength of the membrane increased significantly.The electrochemical window test shows that the diaphragm electrochemical window is 5 V, and the battery capacity is high after the battery is made up.
【學(xué)位授予單位】:青島大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM912
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 李軍;唐盛賀;黃際偉;陶熏;周燕;李大光;;高安全性鋰離子電池電解質(zhì)研究進(jìn)展[J];化工新型材料;2012年10期
2 朱立華;夏延致;全鳳玉;李海寧;孫哲;王兵兵;;耐鹽性海藻酸鈣纖維的制備及性能研究[J];材料導(dǎo)報(bào);2012年12期
3 馮鈉;呂虹霏;錢玉英;張桂霞;王旭;;稀土類β晶型成核劑對(duì)聚丙烯性能的影響[J];現(xiàn)代塑料加工應(yīng)用;2010年05期
4 張傳杰;朱平;郭肖青;;高強(qiáng)度海藻酸鹽纖維的制備[J];合成纖維工業(yè);2008年02期
5 展義臻;朱平;張建波;郭肖青;;海藻纖維的性能與應(yīng)用[J];印染助劑;2006年06期
6 秦益民;海藻酸纖維在醫(yī)用敷料中的應(yīng)用[J];合成纖維;2003年04期
7 姜麗萍;孔慶山;王兵兵;紀(jì)全;夏延致;;海藻酸鈣纖維的制備及阻燃性能研究[J];阻燃材料與技術(shù);2008年04期
相關(guān)博士學(xué)位論文 前1條
1 陳靜娟;多孔無(wú)機(jī)膜的制備及其作為鋰離子電池隔膜的研究[D];華南理工大學(xué);2013年
相關(guān)碩士學(xué)位論文 前5條
1 李道浩;基于海藻纖維原料的能源材料的制備及結(jié)構(gòu)性能研究[D];青島大學(xué);2015年
2 徐泉;纖維素基鋰電池隔膜的制備與性能研究[D];青島大學(xué);2014年
3 申飛艷;紙基鋰離子電池隔膜材料研究[D];長(zhǎng)沙理工大學(xué);2013年
4 毛新欣;鋰離子電池新型隔膜材料的制備及其性能研究[D];河南師范大學(xué);2012年
5 朱立華;交聯(lián)海藻酸鈣纖維的制備與性能研究[D];青島大學(xué);2012年
,本文編號(hào):1736029
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1736029.html