天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

基于受限玻爾茲曼機(jī)的變壓器故障診斷

發(fā)布時(shí)間:2018-04-05 18:06

  本文選題:電力變壓器 切入點(diǎn):故障診斷 出處:《華北電力大學(xué)》2017年碩士論文


【摘要】:根據(jù)電力變壓器油中溶解氣體組分中氣體成分和含量不同的特點(diǎn),通過監(jiān)測(cè)和檢測(cè)變壓器內(nèi)部氣體含量來診斷變壓器故障成為有效的手段之一。本文通過對(duì)基于油中溶解氣體分析(Dissolved Gas-in-oil Analysis,DGA)的各種變壓器診斷方法的優(yōu)缺點(diǎn)介紹,并在各類診斷方法進(jìn)行分析對(duì)比的基礎(chǔ)上,首次將具有較強(qiáng)特征提取能力的受限玻爾茲曼機(jī)(Restricted Boltzmann Machines,RBM)相關(guān)分類方法應(yīng)用于DGA變壓器故障診斷中,輔助檢修人員對(duì)其狀況進(jìn)行科學(xué)評(píng)估提供更為準(zhǔn)確的判斷。引入RBM學(xué)習(xí)算法基礎(chǔ)上,提出了基于分類受限玻爾茲曼機(jī)(Classification Restricted Boltzmann Machines,CRBM)的油浸式電力變壓器故障診斷方法。結(jié)合DGA數(shù)據(jù)特點(diǎn)以及變壓器故障類型,構(gòu)建了基于CRBM的變壓器故障診斷模型,并給出詳細(xì)的診斷步驟和實(shí)現(xiàn)過程。該方法具有較強(qiáng)的特征變換能力,其診斷結(jié)果以概率形式給出。提出了一種基于判別受限玻爾茲曼機(jī)(Discriminative Restricted Boltzmann Machines,DRBM)的油浸式電力變壓器故障診斷新方法。構(gòu)建了深度判別受限玻爾茲曼機(jī)(Deep Discriminative Restricted Boltzmann Machines,DDRBM)分類模型,通過數(shù)據(jù)集分類測(cè)試并與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)進(jìn)行對(duì)比后,應(yīng)用于變壓器故障診斷中,給出詳細(xì)的實(shí)現(xiàn)步驟。該方法具有較強(qiáng)的從大量樣本中提取數(shù)據(jù)特征能力,并且可以有效充分的利用變壓器檢測(cè)設(shè)備提取的無標(biāo)簽樣本進(jìn)行分類,以概率形式給出結(jié)果,有效判別故障類型。采用實(shí)例對(duì)所提出的兩種故障診斷方法進(jìn)行測(cè)試,并將兩種分類方法進(jìn)行對(duì)比分析,結(jié)果表明文中提出的兩種方法診斷性能較優(yōu),能夠更好滿足實(shí)際工程需要。
[Abstract]:According to the different components and contents of dissolved gases in power transformer oil, it is one of the effective methods to diagnose transformer faults by monitoring and detecting the gas content inside the transformer.In this paper, the advantages and disadvantages of various transformer diagnosis methods based on dissolved gas analysis in oil (dissolved Gas-in-oil Analysis) are introduced, and on the basis of analysis and comparison of various diagnostic methods,The restricted Boltzmann machines (RBM) classification method with strong feature extraction ability is applied to fault diagnosis of DGA transformers for the first time.Based on the RBM learning algorithm, a fault diagnosis method for oil-immersed power transformers based on classification Restricted Boltzmann machines is proposed.Combined with the characteristics of DGA data and the type of transformer fault, the transformer fault diagnosis model based on CRBM is constructed, and the detailed diagnosis steps and implementation process are given.This method has strong feature transformation ability, and its diagnosis results are given in the form of probability.A new fault diagnosis method for oil-immersed power transformers based on discriminative Restricted Boltzmann machines is proposed.A classification model of Deep Discriminative Restricted Boltzmann machines (DDRBM) for constrained Boltzmann machine with depth discrimination is constructed. The classification model is tested by data set and compared with traditional neural network and support vector machine, then it is applied to transformer fault diagnosis, and the implementation steps are given in detail.This method has a strong ability to extract data features from a large number of samples, and can effectively and fully use the untagged samples extracted by transformer detection equipment to classify. The results are given in the form of probability, and the fault types can be effectively identified.Two fault diagnosis methods proposed in this paper are tested by an example, and the two classification methods are compared and analyzed. The results show that the two methods proposed in this paper have better diagnostic performance and can better meet the actual engineering needs.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM41

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉凱;張立民;孫永威;;基于遺傳算法的RBM優(yōu)化設(shè)計(jì)[J];微電子學(xué)與計(jì)算機(jī);2015年06期

2 張春霞;姬楠楠;王冠偉;;受限波爾茲曼機(jī)[J];工程數(shù)學(xué)學(xué)報(bào);2015年02期

3 吳海佳;張雄偉;孫蒙;楊吉斌;;深度學(xué)習(xí)中對(duì)比散度算法的有偏性分析[J];解放軍理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年03期

4 王杰;賈育衡;趙昕;;基于稀疏自編碼器的煙葉成熟度分類[J];煙草科技;2014年09期

5 林峰;焦群;朱江;劉金鎖;趙華;;統(tǒng)一代理技術(shù)在輸電線路狀態(tài)監(jiān)測(cè)前端的研究[J];電子技術(shù)應(yīng)用;2014年08期

6 段寶彬;韓立新;;改進(jìn)的深度卷積網(wǎng)絡(luò)及在碎紙片拼接中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2014年09期

7 劉建偉;劉媛;羅雄麟;;玻爾茲曼機(jī)研究進(jìn)展[J];計(jì)算機(jī)研究與發(fā)展;2014年01期

8 楊新法;蘇劍;呂志鵬;劉海濤;李蕊;;微電網(wǎng)技術(shù)綜述[J];中國電機(jī)工程學(xué)報(bào);2014年01期

9 遇炳杰;朱永利;;加權(quán)極限學(xué)習(xí)機(jī)在變壓器故障診斷中的應(yīng)用[J];計(jì)算機(jī)工程與設(shè)計(jì);2013年12期

10 陳達(dá);高升;藺志青;;基于受限波茲曼機(jī)的推薦算法研究[J];軟件;2013年12期

相關(guān)碩士學(xué)位論文 前2條

1 仝少敏;基于受限玻爾茲曼機(jī)的面部運(yùn)動(dòng)識(shí)別方法研究[D];哈爾濱工業(yè)大學(xué);2014年

2 陸璐;卷積神經(jīng)網(wǎng)絡(luò)的研究及其在車牌識(shí)別系統(tǒng)中的應(yīng)用[D];合肥工業(yè)大學(xué);2006年

,

本文編號(hào):1715871

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1715871.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶76a7d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com