基于準(zhǔn)諧振雙Buck電路的高頻LED驅(qū)動(dòng)技術(shù)
本文選題:高頻 切入點(diǎn):雙Buck電路 出處:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:傳統(tǒng)的LED驅(qū)動(dòng)電路為兩級(jí)式結(jié)構(gòu),前級(jí)為功率因數(shù)校正電路,后級(jí)為直流變換電路,其主要優(yōu)點(diǎn)在于能夠?qū)γ恳患?jí)電路進(jìn)行單獨(dú)設(shè)計(jì),設(shè)計(jì)過程更為簡(jiǎn)單,控制也更為精確。為進(jìn)一步提高效率及功率密度,本文提出一種適用于工作在較高頻率的基于準(zhǔn)諧振雙Buck電路的LED驅(qū)動(dòng)系統(tǒng),準(zhǔn)諧振雙Buck電路開關(guān)器件工作在軟開關(guān)狀態(tài),系統(tǒng)具有較高的效率和功率密度。主要研究?jī)?nèi)容包括:本文分析了雙Buck電路的工作原理,得到了其工作在準(zhǔn)諧振狀態(tài)的條件約束,提出了優(yōu)化的參數(shù)設(shè)計(jì)方法。為進(jìn)一步降低系統(tǒng)通態(tài)損耗并提高開關(guān)頻率,本文采用了Ga N system公司的Ga N器件,針對(duì)所選器件,提出優(yōu)化的驅(qū)動(dòng)電路設(shè)計(jì)方法。同時(shí)針對(duì)平面磁性元件中的繞組損耗,寄生電容和漏感等參數(shù)難于預(yù)測(cè)的問題,本文分析了磁性元件的結(jié)構(gòu)、磁性元件的匝數(shù)和層數(shù)、繞組厚度和寬度等對(duì)上述寄生參數(shù)的影響,提出了平面磁性元件的精確設(shè)計(jì)方法,并結(jié)合Maxwell仿真軟件,采用有限元仿真驗(yàn)證了其準(zhǔn)確性。本文提出了準(zhǔn)諧振雙Buck電路優(yōu)化的數(shù)字化控制方法。開關(guān)管的開通和關(guān)斷時(shí)刻分別由零電壓檢測(cè)環(huán)節(jié)和峰值電流檢測(cè)環(huán)節(jié)確定,實(shí)現(xiàn)了開關(guān)器件的自適應(yīng)零電壓開通,同時(shí)有效控制了開關(guān)器件的峰值電流,提高了系統(tǒng)的穩(wěn)定性。同時(shí),本文提出通過采樣輸入平均電流的方法來對(duì)輸出電流進(jìn)行精確調(diào)節(jié),實(shí)現(xiàn)了LED驅(qū)動(dòng)系統(tǒng)的閉環(huán)控制。由于狀態(tài)空間平均法忽略了電路中寄生參數(shù),具有一定的局限性,因此本文采用電路平均法,對(duì)工作在斷續(xù)模式下的非理想Buck電路進(jìn)行建模,建立了其小信號(hào)模型,得到了系統(tǒng)開環(huán)傳遞函數(shù),并采用滯后環(huán)節(jié)對(duì)系統(tǒng)進(jìn)行了補(bǔ)償,同時(shí)根據(jù)相應(yīng)的差分算法,提出了優(yōu)化的數(shù)字補(bǔ)償策略,提高了系統(tǒng)的魯棒性。最后設(shè)計(jì)并搭建了一臺(tái)滿載60W、工作頻率500k Hz的樣機(jī)進(jìn)行實(shí)驗(yàn)驗(yàn)證,實(shí)驗(yàn)測(cè)得額定功率時(shí)系統(tǒng)功率因數(shù)大于0.98,THD小于5%,效率達(dá)到92.9%,驗(yàn)證了理論分析的正確性。
[Abstract]:The traditional LED drive circuit is a two-stage structure, the former stage is a power factor correction circuit, and the latter stage is a DC converter circuit. Its main advantage is that it can be designed separately for each stage of the circuit, and the design process is simpler and the control is more accurate.In order to further improve efficiency and power density, this paper presents a kind of LED drive system based on quasi resonant double Buck circuit, which works at high frequency. The switching device of quasi resonant double Buck circuit works in soft switching state.The system has high efficiency and power density.The main research contents are as follows: this paper analyzes the working principle of double Buck circuit, obtains the condition constraint of its working in quasi-resonant state, and puts forward an optimized parameter design method.In order to further reduce the on-state loss of the system and increase the switching frequency, the gan device of gan system Company is used in this paper. For the selected device, an optimized driving circuit design method is proposed.At the same time, the structure of magnetic element, the number of turns and layers of magnetic element are analyzed in order to solve the problem that the winding loss, parasitic capacitance and leakage inductance are difficult to predict in plane magnetic element.The influence of winding thickness and width on the parasitic parameters is discussed. A precise design method of planar magnetic element is proposed. The accuracy of the method is verified by finite element simulation with Maxwell simulation software.In this paper, a digital control method for quasi resonant double Buck circuit optimization is proposed.The switch on and off time are determined by the zero voltage detection link and the peak current detection link respectively. The adaptive zero voltage switching on of the switch device is realized, and the peak current of the switch device is effectively controlled, and the stability of the system is improved.At the same time, the method of sampling the average input current is proposed to adjust the output current accurately, and the closed-loop control of the LED drive system is realized.Because the state space averaging method neglects the parasitic parameters of the circuit and has some limitations, this paper uses the circuit averaging method to model the non-ideal Buck circuit working in intermittent mode, and establishes its small signal model.The open loop transfer function of the system is obtained, and the delay link is used to compensate the system. At the same time, according to the corresponding difference algorithm, an optimized digital compensation strategy is proposed to improve the robustness of the system.Finally, a prototype with full load of 60W and working frequency of 500kHz is designed and built for experimental verification. When the rated power is measured, the power factor of the system is greater than 0.98m THD less than 5, and the efficiency reaches 92.90.The correctness of the theoretical analysis is verified.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM46
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 任仁;劉碩;張方華;;基于氮化鎵器件和矩陣變壓器的高頻LLC直流變壓器[J];中國(guó)電機(jī)工程學(xué)報(bào);2015年13期
2 代丹;陳寅生;;LED照明技術(shù)應(yīng)用現(xiàn)狀與發(fā)展趨勢(shì)[J];建筑電氣;2014年12期
3 張濤;范廣涵;許毅欽;肖瑤;皮輝;張力;鄭樹文;;LED產(chǎn)業(yè)應(yīng)用領(lǐng)域?qū)@?jìng)爭(zhēng)格局分析[J];照明工程學(xué)報(bào);2014年06期
4 王金龍;張方華;張帥;;高效率準(zhǔn)諧振Buck變換器設(shè)計(jì)與研究[J];電工電能新技術(shù);2014年04期
5 王舒;阮新波;姚凱;葉志紅;;無電解電容無頻閃的LED驅(qū)動(dòng)電源[J];電工技術(shù)學(xué)報(bào);2012年04期
6 魏晨;謝運(yùn)祥;宋靜嫻;;平面變壓器在開關(guān)電源中應(yīng)用的優(yōu)越性分析[J];電源世界;2006年06期
相關(guān)博士學(xué)位論文 前1條
1 王懿杰;照明電源拓?fù)浼捌淇刂萍夹g(shù)研究[D];哈爾濱工業(yè)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前4條
1 付志恒;高壓大功率平面變壓器和電感器的優(yōu)化設(shè)計(jì)[D];西南交通大學(xué);2016年
2 龐振進(jìn);基于氮化鎵器件的高頻車載DC-DC變換器的研究[D];南京航空航天大學(xué);2016年
3 侯鑫堯;高效LED驅(qū)動(dòng)技術(shù)研究[D];西南交通大學(xué);2013年
4 駱康城;大功率LED驅(qū)動(dòng)研究[D];浙江大學(xué);2013年
,本文編號(hào):1714675
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1714675.html