靜電紡絲制備ZnO納米纖維電子傳輸層在倒置有機太陽能電池中的應用
發(fā)布時間:2018-04-04 11:31
本文選題:靜電紡絲 切入點:納米纖維 出處:《太原理工大學》2017年碩士論文
【摘要】:近年來有機太陽能電池的發(fā)展迅速,人們主要通過兩個方向來的研究來提高電池的性能,一個是電學性能,另一個是光學性能。在電學性能的改善過程中主要是通過提高電荷的傳輸和收集能力,而在光學性能的改善是通過提高光的吸收。而目前電池結構改進和活性層改進已經(jīng)進入瓶頸期,所以人們開始引入納米結構來從這兩個方向進行提高電池的性能,常見的方法有:一、在電池的活性層中加入金屬納米顆粒,利用金屬納米顆粒的局域表面等離子效應提高電池對光的吸收;二、在電池的電子傳輸層中引入納米結構,通過納米結構改變電子的傳輸方向和縮短電子活性層到電極的傳輸時間。本文從改善電池電學性能的方向出發(fā),通過在器件中加入納米結構來實現(xiàn)電池性能的改善。利用靜電紡絲制備的ZnO納米纖維加入到有機太陽能電池的電子傳輸層中,來研究了ZnO納米纖維電子傳輸層對活性層為PTB7:PC70BM的倒置結構有機太陽能電池的影響。詳細研究內(nèi)容如下:1.研究了靜電紡絲制備ZnO納米纖維的方法,通過改變靜電紡絲的前驅溶液濃度、注射泵推進速度、接收距離和高壓電源輸出電壓四個參數(shù)來制備出直徑可控的ZnO納米纖維。通過ZnO納米纖維前驅體ZnO/PVP納米纖維的吸收光譜、ZnO的吸收光譜、ZnO納米纖維的吸收光譜以及PVP的吸收光譜來研究了ZnO/PVP納米纖維經(jīng)過焙燒后PVP是否完全去除,同時研究了焙燒時間對ZnO納米纖維直徑的影響。通過實驗最終PVP的含量為3 g,接收距離為12 cm,注射泵的推進速度為0.25 mL/min,電壓的大小依次取14.45 KV、15.45 KV、16.45 KV、17.45 KV時可以制備出直徑在45~90 nm之間的ZnO納米纖維。2.設計了活性層為PTB7:PC70BM的倒置結構有機太陽能電池參考器件和實驗器件,同時設計了靜電紡絲制備ZnO納米纖維電子傳輸層的方法。通過與ZnO納米顆粒制備的電子傳輸層對比得出在電子傳輸層中加入ZnO納米纖維后器件的性能由6.3%提高到6.8%。在實驗過程中研究了靜電紡絲過程中納米纖維的接收時間對電池性能的影響和ZnO納米纖維的直徑對電池性能的影響。通過對比發(fā)現(xiàn)ZnO納米纖維接收時間為30s時器件的Jsc提高比較明顯同時對器件的FF的影響較小,當接收時間增加后Jsc依然提高但是FF會下降。同時ZnO納米纖維的直徑對器件的性能也有影響,隨著ZnO的直徑越小器件的Jsc提高越明顯,FF也會隨著直徑的減小而增加。3.通過分析ZnO納米纖維的不同接收時間的吸收光譜和不同直徑的ZnO納米纖維的吸收光譜,ZnO納米纖維電子傳輸層因為光的散射光的吸收比ZnO納米顆粒電子傳輸層的光的吸收強。在倒置結構有機太陽能電池中電子傳輸層對光的吸收增強,就減少了進入活性層中光的強度,是不利于電池的性能的,但是電池的性能得到提高,說明加入ZnO納米纖維后是通過改善器件的電學性能來提高電池的性能。于是設計了單載流子器件來驗證器件電學性能的提高,通過單載流子器件性能對比發(fā)現(xiàn)電子傳輸能力由1.25×10-4 cm2V-1s-1提高到1.83×10-4 cm2V-1s-1。驗證了ZnO納米纖維加入到倒置結構有機太陽能電池中能夠提高器件對電子的抽取能力和電子從活性層到電極的傳輸能力。
[Abstract]:In recent years, the rapid development of organic solar cells, mainly to improve the performance of the battery through the study of two directions, one is the electrical properties, the other is in the process to improve the optical performance. The electrical properties are mainly by improving the ability of transmission and collection charge, and the optical properties are improved by increasing light absorption. The cell structure improvement and active layer improvement has entered the bottleneck, so people began to introduce the nano structure to improve the performance of the batteries from the two directions, the common methods are: a metal nano particles added in the active layer of the cell, improve the cell absorption of light by localized surface plasma effects of metal nanoparticles; two, the introduction of nano structure in the electron transport layer of the cell, through the nano structure change direction of transmission electron and active layer electrode to reduce the electronic transmission In order to improve the electrical properties. The direction of the battery, by adding the nano structure in the device to achieve the improvement of cell performance. The use of ZnO nanofibers prepared by electrospinning into the electron transport layer of organic solar cells, to study the effect of ZnO nano fiber electronic transmission structure of inverted organic solar cell layer on the activity the layer is PTB7:PC70BM. The detailed research contents are as follows: 1. the method of electrospun ZnO nanofibers were prepared by changing the concentration of precursor solution, electrostatic spinning, injection pump speed, four parameters of receiving distance and high voltage power supply output voltage to the fabrication of ZnO nano fiber with controllable diameter. The absorption spectra of ZnO nanoparticles fiber precursor of ZnO/PVP nanofibers, ZnO absorption spectra, absorption spectra of ZnO nano fiber absorption spectra and PVP of ZnO/PVP nano fiber after baking After burning PVP is completely removed, and the effects of roasting time on ZnO nano fiber diameter. The final content of experimental PVP was 3 G, the receiving distance is 12 cm, speed of injection pump is 0.25 mL/min, the size of the voltage are 14.45 KV, 15.45 KV, 16.45 KV, 17.45 KV can be made preparation of ZnO nano fiber.2. 45~90 in diameter nm between the design of the active layer of PTB7:PC70BM structure of inverted organic solar cell reference devices and experimental devices, while the design method of the electrospun ZnO nanofibers. The electron transport layer and ZnO nanoparticles were prepared by comparing the electron transport layer that join ZnO nanofibers in the electron transport layer after the performance of the device is increased from 6.3% to 6.8%. in the experimental process of receiving time nanofibers in electrospinning process influence on the performance of the battery and the diameter of the ZnO nanofibers on electricity Effect of pool performance. Through the comparison of ZnO nano fiber receiving time 30s device Jsc improves obviously and influence on FF device is small, when the receiving time increased after Jsc still increased but FF decreased. At the same time the performance of ZnO nano fiber diameter of the device also has the influence, with ZnO diameter small device Jsc increased more obviously, absorption spectra of FF will be decreased with the diameter of.3. by different receiving time analysis of ZnO nano fiber absorption spectra and different diameter of ZnO nanofibers, ZnO nanofibers electron transport layer because of the absorption of the light scattering ratio of ZnO nanoparticles electron transport layer of light strong absorption. Enhance the electron transport layer of light absorption in the inverted organic solar cell structure, reduces the intensity of light into the active layer, is not conducive to the performance of the battery, but the battery performance To improve, indicating that addition of ZnO nano fiber is to improve the performance of the battery through the electrical device to improve performance. So the design of single carrier device to verify the electrical properties of the device, by comparing the performance of single carrier devices found electronic transmission capacity from 1.25 cm2V-1s-1 to 1.83 * 10-4 * 10-4 cm2V-1s-1. verified ZnO nano fiber into the structure of inverted organic solar cells can improve the extraction ability of electronic devices and electrons from the active layer to the electrode transmission capacity.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM914.4
【參考文獻】
相關期刊論文 前2條
1 劉冬月;秦文靜;董妮;張強;楊利營;印壽根;;多孔ZnO納米花電子傳輸層對有機太陽能電池性能的優(yōu)化[J];光電子.激光;2014年07期
2 張?zhí)旎?樸玲鈺;趙謖玲;徐征;楊磊;劉祥志;鞠思婷;;有機太陽能電池材料研究新進展[J];有機化學;2011年02期
,本文編號:1709774
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1709774.html
最近更新
教材專著