基于改進(jìn)的RMC-小型風(fēng)電場仿真研究
本文選題:永磁直驅(qū)風(fēng)力發(fā)電機(jī) 切入點(diǎn):PWM整流器 出處:《新疆大學(xué)》2017年碩士論文
【摘要】:目前,風(fēng)力發(fā)電一般采取交流式并入電網(wǎng),但當(dāng)大規(guī)模風(fēng)力發(fā)電并網(wǎng)時(shí),由于風(fēng)電的隨機(jī)性和波動(dòng)性,將對電網(wǎng)電壓、功率以及頻率造成較大影響,并注入大量諧波。為此,相繼提出了不同類型的HVDC(high voltage direct current)直流輸電結(jié)構(gòu)。HVDC系統(tǒng)涵蓋了風(fēng)力發(fā)電和功率傳輸兩個(gè)方向,此系統(tǒng)不但有利于遠(yuǎn)距離輸電過程中,降低損耗,而且還降低了風(fēng)電隨機(jī)性、波動(dòng)性和諧波對電網(wǎng)的影響。其中提出的VSC-HVDC和MMC-HVDC,適用于大規(guī)模風(fēng)力發(fā)電,即風(fēng)力發(fā)電機(jī)通過變壓器升壓匯總到交流母線上,再到換流站進(jìn)行整流,之后進(jìn)行較遠(yuǎn)的直流傳輸,到網(wǎng)側(cè)換流站進(jìn)行逆變,并入交流電網(wǎng),其優(yōu)點(diǎn)是功率的損耗較小,傳輸距離較遠(yuǎn)。針對于分散式或者臺(tái)數(shù)較少的風(fēng)電場,提出了新型的直流輸電結(jié)構(gòu)RMC-HVDC,RMC換流器是將單臺(tái)風(fēng)力發(fā)電機(jī)輸出的三相交流電變換成高壓直流電,不僅能夠減少建設(shè)換流站所需的投資成本和占地面積,又有效降低了因轉(zhuǎn)換環(huán)節(jié)多而帶來的功率損耗。本文根據(jù)RMC(reduced matrix converter)結(jié)構(gòu)特點(diǎn),針對小型風(fēng)力發(fā)電場,提出了一種改進(jìn)的RMC結(jié)構(gòu)。其特點(diǎn)為:永磁直驅(qū)風(fēng)力發(fā)電機(jī)之間進(jìn)行直流并聯(lián),母線電壓經(jīng)過含高頻變壓器的DC-DC結(jié)構(gòu)進(jìn)行升壓;采用直流并聯(lián),減少了風(fēng)力發(fā)電隨機(jī)性和波動(dòng)性對電網(wǎng)電壓、頻率的影響;而DC-DC升壓結(jié)構(gòu)代替換流站,較適用于分散式小型風(fēng)力場;為有效實(shí)現(xiàn)發(fā)電機(jī)的切、并網(wǎng),設(shè)計(jì)了對發(fā)電機(jī)輸出電壓瞬時(shí)采樣來判斷發(fā)電機(jī)整流器側(cè)是否連接到直流母線的斷路器模型。本文對此系統(tǒng)開展了以下幾方面研究:首先,概述了永磁直驅(qū)風(fēng)力發(fā)電機(jī)、PWM整流器、斷路器、含高頻變壓器的DC-DC以及網(wǎng)側(cè)逆變器的基本結(jié)構(gòu)以及其基本原理,建立了數(shù)學(xué)模型,并于Matlab/Simulink搭建了仿真模型。第二,對仿真模型進(jìn)行了控制策略,及參數(shù)正確設(shè)置。并比較了不同PI值下,單機(jī)切、并網(wǎng)對母線、DC-DC以及網(wǎng)側(cè)逆變器電壓、電流的波動(dòng)影響,找出更加優(yōu)化的PI值。第三,在基于Matlab/Simulink仿真平臺(tái)上進(jìn)行了1或2臺(tái)發(fā)電機(jī),在母線已并有2、5或8臺(tái)發(fā)電機(jī)的情況下,切、并直流母線與升壓的仿真分析。結(jié)果表明:隨著已并網(wǎng)發(fā)電機(jī)臺(tái)數(shù)的增多,PI調(diào)節(jié)環(huán)節(jié)個(gè)數(shù)增多,穩(wěn)壓、穩(wěn)流作用增大,再有風(fēng)力發(fā)電機(jī)切、并網(wǎng)時(shí),其引起的電壓波動(dòng)逐漸減少,且1臺(tái)引起的電壓波動(dòng)小于2臺(tái)引起的電壓波動(dòng);當(dāng)電網(wǎng)已并網(wǎng)5或8臺(tái)風(fēng)力發(fā)電機(jī)的情況時(shí),單機(jī)切、并網(wǎng)引起母線電壓DC-DC電壓、電流波動(dòng)對比變化較小,而2臺(tái)發(fā)電機(jī)在切網(wǎng)情況下,波動(dòng)對比,略微有區(qū)別;隨著并網(wǎng)發(fā)電機(jī)臺(tái)數(shù)的增多,母線和DC-DC在穩(wěn)定情況下波動(dòng)增加,同時(shí)考慮到電力電子器件所能承受的容量問題,建議每組電機(jī)群以7臺(tái)較為合適。
[Abstract]:At present, wind power generation is usually integrated into the grid by AC mode, but when large-scale wind power is connected to the grid, due to the randomness and volatility of wind power, it will have a great impact on the voltage, power and frequency of the grid, and inject a large number of harmonics. In this paper, different types of HVDC(high voltage direct current. HVDC systems are proposed, which cover both wind power generation and power transmission. This system not only helps to reduce the loss but also reduces the randomness of wind power during long distance transmission. The effects of volatility and harmonics on the power grid. The proposed VSC-HVDC and MMC-HVDC are suitable for large-scale wind power generation, that is, wind generators are aggregated through transformers to the AC busbar, then rectified to converter stations, and then transmitted further to direct current. The advantages of inverting to the network side converter station and merging with the AC network are that the power loss is lower and the transmission distance is longer. It is aimed at a decentralized wind farm or a wind farm with fewer stations. A new direct current transmission structure RMC-HVDC / RMC converter is proposed to convert the three-phase AC output from a single wind turbine to high-voltage direct current, which can not only reduce the investment cost and occupation area required for the construction of converter station. In this paper, according to the structural characteristics of RMC(reduced matrix converters, the power loss caused by many conversion links is effectively reduced. An improved RMC structure is proposed, which is characterized by DC parallel connection between permanent magnet direct drive wind generators, bus voltage boost through DC-DC structure with high frequency transformer, DC parallel connection, The effect of randomness and fluctuation of wind power generation on the voltage and frequency of the grid is reduced, and the DC-DC boost structure replaces the converter station, which is more suitable for the decentralized small wind field. A circuit breaker model is designed to determine whether the generator rectifier side is connected to DC busbar by instantaneous sampling of generator output voltage. In this paper, the following aspects of the system are studied: firstly, In this paper, the basic structure and principle of permanent magnet direct drive wind generator rectifier, circuit breaker, DC-DC with high frequency transformer and grid-side inverter are summarized. The mathematical model is established, and the simulation model is built in Matlab/Simulink. The control strategy of the simulation model and the correct setting of the parameters are given. The effects of single machine cut and grid connection on the voltage and current fluctuation of the bus bus DC-DC and the grid-side inverter are compared under different Pi values, and the more optimized Pi value is found. One or two generators are carried out on the Matlab/Simulink simulation platform, and when the bus bar has 2 or 8 generators, cut, The simulation analysis of DC busbar and boost voltage shows that: with the increase of the number of connected generators and Pi regulating links, voltage stabilization, steady current effect is increased, and when wind turbine is cut and connected to the grid, The voltage fluctuation caused by it decreases gradually, and the voltage fluctuation caused by one unit is less than that caused by two wind turbines. When the grid has been connected to 5 or 8 wind turbines, the single machine is cut off and the bus voltage DC-DC voltage is connected to the grid. The variation of current fluctuation contrast is small, while the fluctuation contrast of two generators is slightly different when the grid is cut. With the increase of the number of grid-connected generators, the bus and DC-DC fluctuate under stable conditions. At the same time, considering the capacity of power electronic devices, it is suggested that 7 motors are suitable for each group.
【學(xué)位授予單位】:新疆大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM614;TM743
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王銀濤;何山;王維慶;董新勝;張新燕;季潔;;基于改進(jìn)的RMC-分散式小型風(fēng)電場并網(wǎng)仿真研究[J];電力系統(tǒng)保護(hù)與控制;2017年08期
2 李元浩;;直驅(qū)永磁同步風(fēng)電并網(wǎng)系統(tǒng)仿真研究[J];電器與能效管理技術(shù);2016年23期
3 王銀濤;何山;王維慶;王江濤;;永磁風(fēng)力發(fā)電機(jī)直流并聯(lián)及直流升壓的仿真研究[J];四川電力技術(shù);2016年04期
4 ;2015年全球風(fēng)電裝機(jī)統(tǒng)計(jì)[J];風(fēng)能;2016年02期
5 蔣衛(wèi)龍;鄧文浪;郭有貴;李利娟;劉和;余帥;;基于RMC的海上風(fēng)電-HVDC系統(tǒng)功率協(xié)調(diào)控制[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2015年10期
6 徐清彬;徐斯銳;周芝峰;;永磁直驅(qū)風(fēng)力發(fā)電機(jī)側(cè)變流器控制的研究[J];科技與創(chuàng)新;2015年18期
7 曾岳南;湯鍵;黃敏;黎錦桃;;分布式電源并網(wǎng)逆變器雙環(huán)控制研究[J];電力電子技術(shù);2015年02期
8 馬強(qiáng);張理;肖鋼;陳明;顏廷富;;風(fēng)光互補(bǔ)直流并網(wǎng)在海島上的應(yīng)用[J];海洋工程裝備與技術(shù);2014年03期
9 管維亞;吳峰;鞠平;;直驅(qū)永磁風(fēng)力發(fā)電系統(tǒng)仿真與優(yōu)化控制[J];電力系統(tǒng)保護(hù)與控制;2014年09期
10 鄧雪松;歐開健;陳鵬;崔小岳;;基于無差拍電流控制的MMC-HVDC系統(tǒng)控制策略研究[J];電力系統(tǒng)保護(hù)與控制;2014年08期
相關(guān)會(huì)議論文 前1條
1 李衛(wèi)東;丁鈞;孫樵;;幾種常見風(fēng)力發(fā)電機(jī)組的對比分析[A];中國農(nóng)業(yè)機(jī)械工業(yè)協(xié)會(huì)風(fēng)能設(shè)備分會(huì)2013年度論文集(上)[C];2013年
相關(guān)碩士學(xué)位論文 前10條
1 付歟翔;基于LLC諧振的無工頻牽引變壓器的交直變換系統(tǒng)研究[D];西南交通大學(xué);2015年
2 朱貝爾;高功率因數(shù)三相可控整流器的研究與仿真[D];武漢理工大學(xué);2014年
3 李雪城;高頻隔離型光伏并網(wǎng)逆變器的研究[D];北京交通大學(xué);2014年
4 劉洋;基于雙坐標(biāo)變換鎖相的直驅(qū)式風(fēng)力發(fā)電并網(wǎng)逆變研究[D];湖南科技大學(xué);2013年
5 張春時(shí);永磁風(fēng)力發(fā)電系統(tǒng)低電壓穿越技術(shù)的研究[D];東北農(nóng)業(yè)大學(xué);2013年
6 陳峰;風(fēng)電場的直流互聯(lián)技術(shù)研究[D];安徽理工大學(xué);2013年
7 劉宇春;兆瓦級(jí)風(fēng)力發(fā)電機(jī)增速機(jī)構(gòu)的研究[D];陜西科技大學(xué);2013年
8 姬秋華;基于主從結(jié)構(gòu)的微電網(wǎng)綜合控制策略研究[D];南京航空航天大學(xué);2013年
9 周銀;永磁同步風(fēng)力發(fā)電機(jī)控制技術(shù)研究[D];華中科技大學(xué);2013年
10 宋俊生;三相逆變器的故障診斷及容錯(cuò)控制研究[D];集美大學(xué);2012年
,本文編號(hào):1692414
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1692414.html