基于機(jī)組CEMS數(shù)據(jù)的煙氣儀表監(jiān)督系統(tǒng)的研究
本文選題:CEMS 切入點(diǎn):關(guān)聯(lián)規(guī)則 出處:《華北電力大學(xué)》2017年碩士論文
【摘要】:CEMS(Continuous Emission Monitoring System)是指對大氣污染源排放的氣態(tài)污染物和顆粒物進(jìn)行濃度和排放總量連續(xù)監(jiān)測并將信息實(shí)時(shí)傳輸?shù)江h(huán)保部門的裝置,被稱為“煙氣排放連續(xù)監(jiān)測系統(tǒng)”。隨著我國電力環(huán)保事業(yè)的不斷推進(jìn),環(huán)保部門逐漸加強(qiáng)了對于火電廠污染物排放的監(jiān)測力度,通過CEMS實(shí)現(xiàn)對電廠排污情況的實(shí)時(shí)監(jiān)測。但在實(shí)施過程中發(fā)現(xiàn),部分電廠為了達(dá)到排放要求,改動(dòng)CEMS煙氣儀表使其產(chǎn)生虛假的上報(bào)數(shù)據(jù)。對于環(huán)保部門而言,通過人工分析方法,從數(shù)據(jù)量大、數(shù)據(jù)維度高的電廠污染物監(jiān)測數(shù)據(jù)庫中找出虛假數(shù)據(jù),不僅效率低而且成本高。針對這一問題,本文通過引入數(shù)據(jù)挖掘技術(shù)來替代原有的人工數(shù)據(jù)分析方法。從煙氣數(shù)值型數(shù)據(jù)的特點(diǎn)出發(fā),確立通過模糊關(guān)聯(lián)規(guī)則提取數(shù)據(jù)信息的策略,并針對當(dāng)前模糊關(guān)聯(lián)規(guī)則算法中存在的不足,給出一種基于自適應(yīng)聚類的改進(jìn)方案,通過優(yōu)化模糊聚類初始聚類中心的選取方法,提升模糊關(guān)聯(lián)規(guī)則的挖掘效率和準(zhǔn)確性,增強(qiáng)算法在本文應(yīng)用環(huán)境下的適用性。結(jié)合改進(jìn)后的算法,開發(fā)出一個(gè)智能化的CEMS煙氣儀表監(jiān)督系統(tǒng)。系統(tǒng)采用數(shù)據(jù)終端——數(shù)據(jù)傳輸端——監(jiān)測中心端的模式進(jìn)行構(gòu)建,數(shù)據(jù)終端由分布在各個(gè)電廠的CEMS上位機(jī)構(gòu)成,數(shù)據(jù)傳輸端采用GPRS DTU實(shí)現(xiàn),監(jiān)測中心端則負(fù)責(zé)將監(jiān)測到的數(shù)據(jù)實(shí)現(xiàn)可視化顯示,并通過改進(jìn)后的模糊關(guān)聯(lián)規(guī)則算法,協(xié)助監(jiān)測人員實(shí)現(xiàn)對煙氣虛假數(shù)據(jù)的分析識別功能。本系統(tǒng)既滿足了環(huán)保部門對分散CEMS實(shí)施遠(yuǎn)程集中監(jiān)測的需求,同時(shí)也實(shí)現(xiàn)了對CEMS儀表的智能化監(jiān)督,對于我國電力環(huán)保監(jiān)測事業(yè)具有積極意義。
[Abstract]:CEMS(Continuous Emission Monitoring system is a device that continuously monitors the concentration and total emission of gaseous pollutants and particulates emitted from air pollution sources and transmits information to environmental protection departments in real time. It is called the "continuous monitoring system of flue gas emissions". With the continuous promotion of electric power environmental protection in China, environmental protection departments have gradually strengthened the monitoring of pollutant emissions from thermal power plants. The real-time monitoring of sewage discharge in power plant is realized by CEMS. However, in the process of implementation, it is found that in order to meet the emission requirements, some power plants modify the CEMS flue gas meter to produce false reporting data. By means of manual analysis, the false data can be found out from the pollutant monitoring database of power plant with large amount of data and high data dimension, which is not only low efficiency but also high cost. In this paper, data mining technology is introduced to replace the original artificial data analysis method. Based on the characteristics of numerical smoke data, the strategy of extracting data information by fuzzy association rules is established. In order to improve the mining efficiency and accuracy of fuzzy association rules, an improved scheme based on adaptive clustering is proposed to improve the selection of the initial clustering center of fuzzy association rules. The applicability of the enhancement algorithm in the application environment of this paper. Combined with the improved algorithm, an intelligent CEMS flue gas meter monitoring system is developed. The system is constructed by the mode of data terminal-data transmission terminal-monitoring center terminal. The data terminal is composed of the CEMS upper organization distributed in each power plant, the data transmission terminal is implemented by GPRS DTU, the monitoring center is responsible for visualizing the monitored data, and the improved fuzzy association rule algorithm is adopted. This system not only meets the requirement of remote centralized monitoring of decentralized CEMS by environmental protection department, but also realizes the intelligent supervision of CEMS instruments. It has positive significance for the electric power environmental protection monitoring in our country.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP311.13;X773
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張迎飛;陳亮;;煙氣排放連續(xù)監(jiān)測系統(tǒng)(CEMS)的設(shè)計(jì)應(yīng)用[J];儀器儀表用戶;2016年06期
2 張麗;;基于GPRS的遠(yuǎn)程監(jiān)測系統(tǒng)研發(fā)及設(shè)計(jì)[J];消防技術(shù)與產(chǎn)品信息;2015年12期
3 程雅k;張洪青;;K-means改進(jìn)算法在電力企業(yè)同業(yè)對標(biāo)中的應(yīng)用[J];現(xiàn)代商貿(mào)工業(yè);2015年16期
4 郜培剛;;脫硝CEMS系統(tǒng)在火電廠的應(yīng)用[J];山西電子技術(shù);2015年03期
5 劉帥;楊英杰;常德顯;邱衛(wèi);;改進(jìn)的模糊關(guān)聯(lián)規(guī)則及其挖掘算法[J];計(jì)算機(jī)工程與設(shè)計(jì);2015年04期
6 姜玉葉;丁保華;趙志科;張曉光;;基于OPC和GPRS的空壓機(jī)遠(yuǎn)程通信狀態(tài)監(jiān)控系統(tǒng)設(shè)計(jì)[J];儀表技術(shù)與傳感器;2015年03期
7 高波;黃敏;;基于k-means改進(jìn)算法的入侵檢測系統(tǒng)研究[J];電腦知識與技術(shù);2014年31期
8 盧建昌;樊圍國;;大數(shù)據(jù)時(shí)代下數(shù)據(jù)挖掘技術(shù)在電力企業(yè)中的應(yīng)用[J];廣東電力;2014年09期
9 唐偉;;一種有效的模糊關(guān)聯(lián)規(guī)則挖掘的形式化方法[J];計(jì)算機(jī)工程與應(yīng)用;2015年18期
10 柳潔冰;劉保相;陳煥煥;;模糊關(guān)聯(lián)規(guī)則挖掘研究[J];河北農(nóng)業(yè)大學(xué)學(xué)報(bào);2013年03期
相關(guān)博士學(xué)位論文 前2條
1 吳簡;面向業(yè)務(wù)的基于模糊關(guān)聯(lián)規(guī)則挖掘的網(wǎng)絡(luò)故障診斷[D];電子科技大學(xué);2012年
2 李智勇;電力系統(tǒng)運(yùn)行信息的數(shù)據(jù)挖掘研究[D];浙江大學(xué);2009年
相關(guān)碩士學(xué)位論文 前5條
1 冉娜;模糊關(guān)聯(lián)規(guī)則挖掘技術(shù)研究及其在推薦系統(tǒng)中的應(yīng)用[D];西南交通大學(xué);2015年
2 郭嘉美;模糊關(guān)聯(lián)規(guī)則挖掘及在工業(yè)數(shù)據(jù)中的應(yīng)用[D];鄭州大學(xué);2014年
3 楊威;煙氣在線監(jiān)測系統(tǒng)(CEMS)在環(huán)境管理中的應(yīng)用研究[D];大連理工大學(xué);2013年
4 王暢;模糊關(guān)聯(lián)規(guī)則挖掘及其應(yīng)用[D];南京航空航天大學(xué);2012年
5 韓暉;基于數(shù)據(jù)挖掘的900MW汽輪機(jī)組故障診斷系統(tǒng)研究[D];上海交通大學(xué);2009年
,本文編號:1687212
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1687212.html