柔性太陽能電池用于撲翅翼飛行的力學(xué)、電學(xué)性能實(shí)驗研究
本文選題:撲翼飛行器 切入點(diǎn):太陽能電池 出處:《中國民航大學(xué)》2017年碩士論文
【摘要】:微型飛行器(MAV,Micro Aerial Vehicle)的產(chǎn)生和發(fā)展給人類生活帶來了很多便利,還能夠憑借自身的高靈活性、機(jī)動性飛行和小特征尺寸優(yōu)勢,執(zhí)行很多人類無法完成的任務(wù),也幫助實(shí)現(xiàn)了很多科研領(lǐng)域的探索和突破?茖W(xué)研究證實(shí),在15cm以下特征尺寸的范圍內(nèi),撲翼飛行器相對于固定翼和旋翼飛行器而言,具有更高的靈活性和機(jī)動性。而太陽能則是一種公認(rèn)的優(yōu)質(zhì)能源,具有清潔可再生等特點(diǎn)。目前,國內(nèi)撲翼飛行器研制領(lǐng)域的絕大部分研究仍停留在單一鋰電池功能的階段。而國際范圍內(nèi),也只有馬里蘭大學(xué)進(jìn)行了將太陽能電池板用于仿鳥型撲翼飛行器作為備用補(bǔ)給能源的應(yīng)用嘗試。但由于仿鳥類撲翼飛行器的撲翼頻率相對較低,馬里蘭大學(xué)的研究并沒有涉及到振動對太陽能電池性能可能造成的影響,本研究即嘗試在一定程度上彌補(bǔ)這一空缺。研究旨在通過實(shí)驗的方式,探究柔性薄膜太陽能電池板在撲翼飛行器上應(yīng)用的可行性和適用性。依據(jù)疲勞振動力學(xué)及共振原理,所選取的實(shí)驗條件為樣品柔性薄膜太陽能電池板的一階固有頻率振動,探究“極限差”工作環(huán)境下太陽能電池板樣品的力學(xué)、電學(xué)振動特性表現(xiàn)。研究前期主要針對太陽能電池板樣品進(jìn)行了數(shù)值模擬、理論計算和自由振動實(shí)驗,來確定樣品的固有頻率可能取值范圍。三者所得到的結(jié)果相互吻合度較高,證明了計算中一些條件假設(shè)和估算的合理性。在此基礎(chǔ)上,在振動平臺上進(jìn)行了振動實(shí)驗。由于研究課題較為前沿,目前尚無類似實(shí)驗研究發(fā)表,因而整個實(shí)驗方案全部為自主設(shè)計實(shí)施。期間還自主設(shè)計了實(shí)驗專用的薄膜太陽能電池板夾具、制作了能夠?qū)崿F(xiàn)輸出電壓實(shí)時顯示的單片機(jī)。針對太陽能電池板樣品自身尺寸小、質(zhì)量輕的特點(diǎn),將一些不適用的傳統(tǒng)實(shí)驗方法進(jìn)行了改良,例如將水平自由振動改為豎直方向、舍棄粘貼加速度傳感器而改為手動掃頻等。后期還根據(jù)對實(shí)驗現(xiàn)象的觀察和結(jié)果分析對實(shí)驗進(jìn)行了優(yōu)化改進(jìn),取得了良好的優(yōu)化效果。
[Abstract]:The emergence and development of MAVV Micro Aerial vehicle has brought a lot of convenience to human life, and has also been able to perform many tasks that cannot be accomplished by human beings by virtue of their high flexibility, maneuverability flight and small feature size advantages. It has also helped to achieve many scientific discoveries and breakthroughs. Scientific research has confirmed that flapping-wing aircraft are relative to fixed-wing and rotary-wing aircraft in the range below the characteristic size of 15cm. Has higher flexibility and mobility. Solar energy is recognized as a quality energy, with the characteristics of clean and renewable. Most of the research in the field of flapping-wing aircraft development in China is still at the stage of single lithium battery function. Only the University of Maryland has tried to use solar panels for birdlike flapping aircraft as a backup energy source. But because of the relatively low flapping frequency, The University of Maryland study did not address the possible impact of vibration on the performance of solar cells. The feasibility and applicability of flexible thin film solar panels in flapping wing aircraft were explored. According to the principle of fatigue vibration and resonance, the experimental conditions were selected as the first order natural frequency vibration of the flexible thin film solar panels. The mechanical and electrical vibration characteristics of solar panel samples under the working conditions of "limit difference" were investigated. The numerical simulation, theoretical calculation and free vibration experiments of solar panel samples were carried out in the early stage of the study. To determine the possible range of natural frequencies of the samples. The results obtained by the three methods have a good agreement with each other, which proves the reasonableness of some conditional assumptions and estimates in the calculation. Vibration experiments have been carried out on the vibration platform. Because of the advanced research topics, no similar experimental research has been published. Therefore, the whole experiment plan was designed and implemented on its own. During this period, the special film solar panel fixture for the experiment was also designed independently. A single chip microcomputer which can display the output voltage in real time is made. In view of the small size and light mass of the solar panel sample, some unsuitable traditional experimental methods are improved. For example, the horizontal free vibration is changed to vertical direction, and the acceleration sensor is replaced by manual sweep instead. The experiment is optimized and improved according to the observation and result analysis of the experimental phenomena in the later stage, and good optimization results are obtained.
【學(xué)位授予單位】:中國民航大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM914.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 方如金;吳伏家;;微型飛行器的發(fā)展[J];機(jī)電技術(shù);2013年05期
2 鄧琦;;世界上首款機(jī)器蒼蠅在哈佛成功起飛[J];今日科苑;2013年12期
3 劉文光;陳國平;賀紅林;吳暉;;結(jié)構(gòu)振動疲勞研究綜述[J];工程設(shè)計學(xué)報;2012年01期
4 李博;胡偉葉;沈以赴;周明;;飛機(jī)框架結(jié)構(gòu)件振動疲勞失效分析[J];金屬熱處理;2011年09期
5 張旭鵬;楊勝文;張金玲;;非晶硅薄膜電池應(yīng)用及前景分析[J];光源與照明;2010年01期
6 楊金煥;;光伏系統(tǒng)能量償還時間的分析[J];上海節(jié)能;2010年01期
7 趙雨;孫煜;;非晶硅薄膜電池的歷史、現(xiàn)狀和發(fā)展中的主要問題[J];能源技術(shù);2009年06期
8 繆仁杰;李淑蘭;;太陽能利用現(xiàn)狀與發(fā)展前景[J];應(yīng)用能源技術(shù);2007年05期
9 姚起杭;姚軍;;工程結(jié)構(gòu)的振動疲勞問題[J];應(yīng)用力學(xué)學(xué)報;2006年01期
10 陳國棟;賈培發(fā);劉艷;;微型飛行器的研究與發(fā)展[J];機(jī)器人技術(shù)與應(yīng)用;2006年02期
相關(guān)博士學(xué)位論文 前2條
1 劉嵐;微型撲翼飛行器的仿生翼設(shè)計技術(shù)研究[D];西北工業(yè)大學(xué);2007年
2 鮑麟;昆蟲翼柔性變形的力學(xué)效應(yīng)研究[D];中國科學(xué)院研究生院;2007年
相關(guān)碩士學(xué)位論文 前2條
1 于冰;微型仿生撲翼飛行機(jī)器人飛行機(jī)理和控制方案研究[D];東南大學(xué);2006年
2 符冰;微型撲翼飛行器控制技術(shù)研究[D];西北工業(yè)大學(xué);2005年
,本文編號:1658203
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1658203.html