永磁直驅(qū)風(fēng)力發(fā)電系統(tǒng)的解析仿真
本文選題:永磁同步發(fā)電機(jī) 切入點(diǎn):系統(tǒng) 出處:《華北電力大學(xué)(北京)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:永磁直驅(qū)風(fēng)力發(fā)電系統(tǒng)中無(wú)論機(jī)側(cè)還是網(wǎng)側(cè)變流器都是由可關(guān)斷器件構(gòu)成,由于器件頻繁快速的導(dǎo)通與關(guān)斷,系統(tǒng)時(shí)刻運(yùn)行在各種不對(duì)稱與對(duì)稱交替的復(fù)雜瞬態(tài)過(guò)程中。一般通過(guò)傳統(tǒng)的數(shù)值方法計(jì)算系統(tǒng)中每時(shí)刻瞬態(tài)累積完成系統(tǒng)整體的仿真,但面對(duì)規(guī)模日趨增大、存在大量變流器的風(fēng)力發(fā)電系統(tǒng),數(shù)值仿真速度極慢。本文對(duì)永磁直驅(qū)風(fēng)力發(fā)電系統(tǒng)中的永磁同步發(fā)電機(jī)-整流器系統(tǒng)模型,應(yīng)用解析法求解該系統(tǒng)模型各種復(fù)雜瞬態(tài),并將變流器部分理想開關(guān)化處理,為永磁直驅(qū)風(fēng)力發(fā)電系統(tǒng)仿真提供一種更為快速的計(jì)算方法,來(lái)完成特定運(yùn)行狀態(tài)下的解析仿真,并研究其仿真計(jì)算的快速性。首先,分別介紹了永磁同步電機(jī)在三相靜止坐標(biāo)系下、同步旋轉(zhuǎn)坐標(biāo)系下和空間矢量表示時(shí)的數(shù)學(xué)模型及變換關(guān)系。對(duì)降低數(shù)學(xué)模型階數(shù)的空間矢量表示的永磁同步電機(jī)瞬態(tài)數(shù)學(xué)模型分別通過(guò)解析法和數(shù)值法進(jìn)行計(jì)算,并分析兩種計(jì)算方式各自的特點(diǎn)。其次,根據(jù)所確定的系統(tǒng)不同的開關(guān)作用時(shí)間計(jì)算公式及開關(guān)序列,得到由不同調(diào)制波頻率和載波頻率所產(chǎn)生SPWM脈沖的方法,并在M文件中編程驗(yàn)證仿真,為后續(xù)工作提供基礎(chǔ)。然后,通過(guò)建立永磁同步發(fā)電機(jī)-整流器系統(tǒng)的數(shù)學(xué)模型,分別用解析法和數(shù)值法求解得到適用于該系統(tǒng)各種復(fù)雜瞬態(tài)下的電流表達(dá)式,實(shí)現(xiàn)以兩種不同的方式求解該系統(tǒng)運(yùn)行過(guò)程中的復(fù)雜瞬態(tài)問(wèn)題。最后,根據(jù)解析法和數(shù)值法對(duì)該系統(tǒng)的求解所得,并結(jié)合系統(tǒng)的開關(guān)作用時(shí)間及開關(guān)序列在M文件中編程,通過(guò)對(duì)該系統(tǒng)每一開關(guān)狀態(tài)所對(duì)應(yīng)的瞬態(tài)的計(jì)算,實(shí)現(xiàn)該系統(tǒng)在特定工況下的解析仿真和數(shù)值仿真。相同工況下,在Simulink仿真環(huán)境中搭建相同模型仿真。將Simulink仿真、解析法仿真、數(shù)值法中的四階龍格-庫(kù)塔法和改進(jìn)歐拉法在同一工況下仿真時(shí)計(jì)時(shí),結(jié)果顯示解析法仿真所消耗的時(shí)間最少,體現(xiàn)了解析法計(jì)算該系統(tǒng)復(fù)雜瞬態(tài)時(shí)的速度優(yōu)勢(shì)。
[Abstract]:In the permanent magnet direct drive wind power generation system, both the machine side and the grid side converter are made up of turn-off devices, because of the frequent and fast turn-on and turn-off of the devices, The system always runs in a variety of complex transient processes of alternating asymmetry and symmetry. The traditional numerical method is generally used to calculate the transient accumulation of the system at every moment to complete the overall simulation of the system, but the scale of the system becomes larger and larger. The numerical simulation speed of wind power generation system with a large number of converters is extremely slow. In this paper, the model of permanent magnet synchronous generator rectifier system in permanent magnet direct drive wind power generation system is solved by analytic method. It provides a faster calculation method for the simulation of permanent magnet direct drive wind power generation system to complete the analytical simulation under the specific operation state, and studies the rapidity of the simulation calculation. In this paper, the permanent magnet synchronous motor in three-phase stationary coordinate system is introduced. The mathematical model and transformation relation in the representation of space vector in synchronous rotating coordinate system. The transient mathematical model of permanent magnet synchronous motor (PMSM), which reduces the order of mathematical model, is calculated by analytic method and numerical method, respectively. The characteristics of the two calculation methods are analyzed. Secondly, according to the different formula of switching time and the switching sequence, the method of SPWM pulse generated by different modulation wave frequency and carrier frequency is obtained. The simulation is verified by programming in M file, which provides the foundation for the following work. Then, the mathematical model of permanent magnet synchronous generator rectifier system is established. The current expressions suitable for various complex transient conditions of the system are obtained by analytical method and numerical method respectively, and the complex transient problems in the operation of the system can be solved in two different ways. Finally, According to the solution of the system by analytic method and numerical method, combined with the switching time and switching sequence of the system programmed in M file, the transient calculation of each switching state of the system is carried out. The analytical simulation and numerical simulation of the system under specific conditions are realized. Under the same working condition, the same model simulation is built in the Simulink simulation environment. The Simulink simulation and analytical simulation are used to simulate the system. The simulation time of the fourth order Runge-Kutta method and the improved Euler method in the numerical method is in the same condition. The results show that the analytical method consumes the least time in the simulation, which reflects the advantage of the analytical method in calculating the velocity of the complex transient state of the system.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM614
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉波;賀志佳;金昊;;風(fēng)力發(fā)電現(xiàn)狀與發(fā)展趨勢(shì)[J];東北電力大學(xué)學(xué)報(bào);2016年02期
2 崔學(xué)深;張自力;李和明;;復(fù)數(shù)域中晶閘管-電動(dòng)機(jī)系統(tǒng)復(fù)雜瞬態(tài)的數(shù)值計(jì)算[J];電力自動(dòng)化設(shè)備;2014年07期
3 田書欣;程浩忠;曾平良;張立波;馬則良;洪紹云;張建平;Masoud BAZARGAN;;大型集群風(fēng)電接入輸電系統(tǒng)規(guī)劃研究綜述[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年10期
4 李和明;張自力;崔學(xué)深;羅應(yīng)立;楊婭萍;;晶閘管-電動(dòng)機(jī)系統(tǒng)不對(duì)稱瞬態(tài)建模及解析[J];電工技術(shù)學(xué)報(bào);2013年08期
5 夏長(zhǎng)亮;;永磁風(fēng)力發(fā)電系統(tǒng)及其功率變換技術(shù)[J];電工技術(shù)學(xué)報(bào);2012年11期
6 馬威;包廣清;;永磁直驅(qū)風(fēng)電機(jī)組的建模與仿真[J];工礦自動(dòng)化;2010年08期
7 楊曉萍;段先鋒;鐘彥儒;;直驅(qū)永磁同步風(fēng)電機(jī)組不對(duì)稱故障穿越的研究[J];電機(jī)與控制學(xué)報(bào);2010年02期
8 李小凡;任美嬋;;基于TMS320LF2407A的SPWM不對(duì)稱規(guī)則采樣法的分析與實(shí)現(xiàn)[J];自動(dòng)化與儀器儀表;2007年02期
9 黃倫學(xué);王田苗;魏洪興;;基于TMS320LF2407A的SPWM波形研究[J];安徽工程科技學(xué)院學(xué)報(bào)(自然科學(xué)版);2006年01期
10 程瓊,陳紅兵;用狀態(tài)空間法對(duì)三相電壓型PWM整流器建模[J];武漢理工大學(xué)學(xué)報(bào)(信息與管理工程版);2005年01期
相關(guān)博士學(xué)位論文 前2條
1 張自力;感應(yīng)電機(jī)電源快速軟切換關(guān)鍵技術(shù)的基礎(chǔ)研究[D];華北電力大學(xué);2015年
2 崔學(xué)深;感應(yīng)電機(jī)電源軟投入相關(guān)理論及節(jié)能控制新技術(shù)研究[D];華北電力大學(xué)(北京);2009年
相關(guān)碩士學(xué)位論文 前8條
1 賈英;基于SPWM鼠籠式異步發(fā)電機(jī)—整流器系統(tǒng)的解析仿真[D];華北電力大學(xué);2015年
2 宋修璞;永磁直驅(qū)風(fēng)力發(fā)電機(jī)組模擬系統(tǒng)的研究[D];北京交通大學(xué);2014年
3 項(xiàng)丹;永磁直驅(qū)風(fēng)力發(fā)電機(jī)組全功率變流器控制策略的研究[D];重慶大學(xué);2013年
4 熊魁;直驅(qū)永磁風(fēng)力發(fā)電機(jī)組在電網(wǎng)故障下低電壓穿越能力研究[D];華北電力大學(xué);2013年
5 吳競(jìng)之;基于鼠籠電機(jī)全功率風(fēng)力發(fā)電的系統(tǒng)分析與研究[D];上海交通大學(xué);2011年
6 張穎;基于SOPC的電力電子控制技術(shù)研究[D];華北電力大學(xué)(河北);2010年
7 沈妍;變速恒頻交流勵(lì)磁風(fēng)力發(fā)電機(jī)并網(wǎng)同期控制研究[D];華北電力大學(xué)(河北);2007年
8 侯柏霞;異步電動(dòng)機(jī)—晶閘管系統(tǒng)綜合保護(hù)研究[D];華北電力大學(xué)(北京);2006年
,本文編號(hào):1641457
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1641457.html