配電臺區(qū)時間序列大數(shù)據(jù)負(fù)荷預(yù)測技術(shù)研究
本文選題:臺區(qū)負(fù)荷預(yù)測 切入點(diǎn):聚類 出處:《華北電力大學(xué)(北京)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著電力用電信息采集系統(tǒng)的優(yōu)化升級,電力用戶側(cè)除了能夠采集到傳統(tǒng)的電能使用信息外,也能獲得用戶電能質(zhì)量、96點(diǎn)負(fù)荷曲線、用電行為偏好等多維度反映用戶特性的數(shù)據(jù)。配電臺區(qū)負(fù)荷預(yù)測作為傳統(tǒng)負(fù)荷預(yù)測領(lǐng)域的細(xì)分,是進(jìn)行精細(xì)化的臺區(qū)用電管理、運(yùn)行調(diào)度與網(wǎng)架結(jié)構(gòu)優(yōu)化的新興手段。受制于臺區(qū)負(fù)荷的隨機(jī)性與多樣性,傳統(tǒng)預(yù)測方法在臺區(qū)級的預(yù)測中表現(xiàn)欠佳,而借助大數(shù)據(jù)平臺這一新興工具,對用戶側(cè)采集到的冗雜且大量的用戶特性信息加以利用,能夠有效提高臺區(qū)負(fù)荷預(yù)測的預(yù)測精度與預(yù)測適應(yīng)性。本文分析臺區(qū)負(fù)荷數(shù)據(jù)的特點(diǎn)及其關(guān)聯(lián)因素,借助大數(shù)據(jù)平臺中K-means、BIRCH、WARD等聚類算法,對上海市2977個臺區(qū)進(jìn)行聚類劃分,結(jié)合實(shí)際臺區(qū)行業(yè)構(gòu)成分析了各聚類簇的特征及劃分的有效性。聚類結(jié)果表明臺區(qū)內(nèi)用戶對氣象、經(jīng)濟(jì)等因素均有不同的敏感度,以聚類結(jié)果為依據(jù),對不同用電特性的用戶類分別建立預(yù)測模型是提高臺區(qū)負(fù)荷預(yù)測精度的有效手段。提出基于機(jī)器學(xué)習(xí)中的嶺回歸算法與自適應(yīng)思想的自適應(yīng)嶺回歸預(yù)測模型,依據(jù)自適應(yīng)程度將模型劃分為3種模式,對臺區(qū)負(fù)荷建模并實(shí)際訓(xùn)練、預(yù)測。3種模式在訓(xùn)練用時、預(yù)測精度、敏感度方面表現(xiàn)出不同特性,適用不同預(yù)測環(huán)境。在聚類與回歸模型構(gòu)建的基礎(chǔ)上,進(jìn)一步提出基于聚類及自適應(yīng)嶺回歸技術(shù)的臺區(qū)負(fù)荷預(yù)測方法,設(shè)計(jì)3種聚類特征選取方式與5種聚類算法作為預(yù)測自適應(yīng)優(yōu)化的可調(diào)模塊,增強(qiáng)了預(yù)測的動態(tài)優(yōu)化與誤差調(diào)控能力。使用該方法對上海市某包含487戶用戶的臺區(qū)進(jìn)行預(yù)測,算例結(jié)果顯示在不同預(yù)測環(huán)境中通過優(yōu)選聚類特征、聚類算法及模型參數(shù)自適應(yīng)調(diào)節(jié),該預(yù)測方法能達(dá)到較高的預(yù)測精度與環(huán)境適應(yīng)能力。
[Abstract]:With the optimization and upgrading of electric power information acquisition system, the power user side can not only collect the traditional power usage information, but also obtain the 96 point load curve of power quality. As a subdivision of traditional load forecasting field, distribution station area load forecasting is a fine management of station area power consumption. Due to the randomness and diversity of the load in Taiwan area, the traditional forecasting method is not good in the prediction of Taiwan district level, but with the help of big data platform, which is a new tool, It can effectively improve the forecasting accuracy and adaptability of station load forecasting by using the miscellaneous and large amount of user characteristic information collected by user side. This paper analyzes the characteristics of station load data and its related factors. With the help of K-means-BIRCHWARD and other clustering algorithms in big data platform, the cluster classification of 2977 stations in Shanghai is carried out, and the characteristics of each cluster and the validity of the division are analyzed in combination with the industry composition of the actual station. The clustering results show that the users in the station are sensitive to meteorology. Economic and other factors have different sensitivity, based on clustering results, It is an effective method to improve the accuracy of load forecasting for different users with different power consumption characteristics. An adaptive ridge regression prediction model based on machine learning and adaptive thinking is proposed. According to the adaptive degree, the model is divided into three models, and the load in the station area is modeled and trained in practice. The prediction of the three models shows different characteristics in training time, prediction accuracy and sensitivity. Based on the construction of clustering and regression models, a load forecasting method based on clustering and adaptive ridge regression is proposed. Three kinds of clustering feature selection methods and five clustering algorithms are designed as adjustable modules for adaptive predictive optimization, which enhances the dynamic optimization and error control ability of prediction. The proposed method is used to predict a certain station area in Shanghai, which includes 487 users. The simulation results show that the prediction method can achieve high prediction accuracy and environmental adaptability by optimizing clustering features, clustering algorithm and adaptive adjustment of model parameters in different prediction environments.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM715
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王德文;孫志偉;;電力用戶側(cè)大數(shù)據(jù)分析與并行負(fù)荷預(yù)測[J];中國電機(jī)工程學(xué)報;2015年03期
2 秦礪寒;李順昕;韓江磊;牛東曉;朱正甲;;基于FOA優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)在夏季空調(diào)降溫負(fù)荷預(yù)測中的應(yīng)用[J];華東電力;2014年12期
3 王德金;;基于大數(shù)據(jù)技術(shù)的短期負(fù)荷分析與預(yù)測[J];華東電力;2014年10期
4 李瑾;劉金朋;王建軍;;采用支持向量機(jī)和模擬退火算法的中長期負(fù)荷預(yù)測方法[J];中國電機(jī)工程學(xué)報;2011年16期
5 趙淵;張夏菲;謝開貴;;非參數(shù)自回歸方法在短期電力負(fù)荷預(yù)測中的應(yīng)用[J];高電壓技術(shù);2011年02期
6 何永秀;王躍錦;楊麗芳;何海英;羅濤;;基于最小二乘支持向量機(jī)的居民用電預(yù)測研究[J];電力需求側(cè)管理;2010年03期
7 李妮;江岳春;黃珊;毛李帆;;基于累積式自回歸動平均傳遞函數(shù)模型的短期負(fù)荷預(yù)測[J];電網(wǎng)技術(shù);2009年08期
8 賈慧敏;何光宇;方朝雄;李可文;姚宇臻;黃妹妹;;用于負(fù)荷預(yù)測的層次聚類和雙向夾逼結(jié)合的多層次聚類法[J];電網(wǎng)技術(shù);2007年23期
9 金義雄;段建民;徐進(jìn);衛(wèi)功存;蒯圣宇;李宏仲;王承民;;考慮氣象因素的相似聚類短期負(fù)荷組合預(yù)測方法[J];電網(wǎng)技術(shù);2007年19期
10 顧丹珍;艾芊;陳陳;沈善德;;自適應(yīng)神經(jīng)網(wǎng)絡(luò)在負(fù)荷動態(tài)建模中的應(yīng)用[J];中國電機(jī)工程學(xué)報;2007年16期
相關(guān)碩士學(xué)位論文 前2條
1 李小燕;考慮氣象因素的電力系統(tǒng)短期負(fù)荷預(yù)測研究[D];華南理工大學(xué);2013年
2 馮曉蒲;基于實(shí)際負(fù)荷曲線的電力用戶分類技術(shù)研究[D];華北電力大學(xué);2011年
,本文編號:1635149
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1635149.html