車(chē)用鋰離子電池?zé)岱治?/H1>
發(fā)布時(shí)間:2018-03-12 13:42
本文選題:鋰離子電池 切入點(diǎn):電化學(xué)-熱特性 出處:《昆明理工大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:電動(dòng)汽車(chē)的發(fā)展,為降低石油消耗和改善空氣質(zhì)量提供了有效的途徑。鋰離子電池因其電壓高、能量大、無(wú)記憶效應(yīng)、綠色環(huán)保等優(yōu)點(diǎn)而成為電動(dòng)汽車(chē)的主要?jiǎng)恿υ粗。鋰離子電池工作過(guò)程受自身與外界環(huán)境溫度的影響較大,溫度較高時(shí),副反應(yīng)加快,造成電池的容量衰減;溫度過(guò)低時(shí),電池功率、容量明顯下降,可能引起電池壽命的降低,埋下安全隱患。因此分析鋰離子電池的熱特性,對(duì)鋰離子電池組進(jìn)行合理的熱管理,對(duì)提高電動(dòng)汽車(chē)的安全性,乃至降低能源消耗,改善環(huán)境質(zhì)量都具有極其重要的意義。本文以18650圓柱鋰離子電池為研究對(duì)象,從單體電池的電化學(xué)、熱特性出發(fā),逐步探究了該電池的充放電特性、以及充放電過(guò)程的產(chǎn)熱規(guī)律和影響因素;為改善其電池組的散熱性能,設(shè)計(jì)了一種并行通風(fēng)散熱系統(tǒng),并采用仿真的手段對(duì)該散熱系統(tǒng)與傳統(tǒng)串行通風(fēng)散熱系統(tǒng)的散熱效果進(jìn)行對(duì)比分析。所做的主要工作如下:(1)以電荷守恒方程、質(zhì)量守恒方程以及電極動(dòng)力學(xué)理論等為基礎(chǔ)建立18650錳酸鋰電池的電化學(xué)模型,對(duì)恒流充放電過(guò)程的電化學(xué)性能進(jìn)行分析。結(jié)果表明:在充電時(shí)電池充電倍率越高,電池充電過(guò)程的“電壓平臺(tái)”越高,平臺(tái)持續(xù)時(shí)間越短,電池的充電容量越小;放電時(shí),電池放電倍率越高,“電壓平臺(tái)”越低且持續(xù)時(shí)間越短,電池放電容量越小。(2)結(jié)合傳熱理論,建立電池電化學(xué)-熱耦合模型,分析了外部絕熱條件、自然對(duì)流條件、低強(qiáng)制對(duì)流條件以及風(fēng)冷條件等因素對(duì)電池溫度的影響,并根據(jù)絕熱條件下電池充、放電過(guò)程的平均溫度變化對(duì)電池的產(chǎn)熱量進(jìn)行計(jì)算。結(jié)果表明風(fēng)冷條件對(duì)單體鋰離子電池的溫度影響較大。(3)對(duì)傳統(tǒng)串行通風(fēng)散熱系統(tǒng)以及所設(shè)計(jì)的并行通風(fēng)散熱系統(tǒng)的散熱效果進(jìn)行對(duì)比分析。從電池組內(nèi)單體電池的內(nèi)部溫度、表面溫度、以及不同入口條件的角度來(lái)看,所設(shè)計(jì)的并行通風(fēng)散熱系統(tǒng)散熱效果均優(yōu)于傳統(tǒng)的串行通風(fēng)方式,且能源消耗較少。
[Abstract]:The development of electric vehicles provides an effective way to reduce oil consumption and improve air quality. Green environmental protection and other advantages have become one of the main power sources for electric vehicles. The working process of lithium-ion batteries is greatly affected by the temperature of their own and outside environment. When the temperature is high, the side effects are accelerated, resulting in the capacity attenuation of the battery, and when the temperature is too low, The decrease of battery power and capacity may lead to the decrease of battery life and the hidden danger of safety. Therefore, the thermal characteristics of lithium ion battery are analyzed and the reasonable thermal management of lithium ion battery pack is carried out to improve the safety of electric vehicle. It is of great significance to reduce energy consumption and improve environmental quality. In this paper, the charge and discharge characteristics of 18650 cylindrical lithium ion battery are investigated step by step from the electrochemical and thermal characteristics of the single cell. In order to improve the heat dissipation performance of the battery pack, a parallel ventilation heat dissipation system is designed. By means of simulation, the heat dissipation effect of this heat dissipation system is compared with that of the traditional serial ventilation heat dissipation system. The main work done is as follows: 1) the charge conservation equation is used. On the basis of mass conservation equation and electrode dynamics theory, the electrochemical model of 18650 lithium manganese oxide battery was established, and the electrochemical performance of constant current charge-discharge process was analyzed. The results show that the higher the charge rate of the battery is, the higher the charge rate is. The higher the "voltage platform" of the battery charging process, the shorter the duration of the platform, the smaller the charging capacity of the battery, and the higher the discharge rate of the battery during discharge, the lower the "voltage platform" and the shorter the duration. The smaller the discharge capacity of the battery is, the more the heat transfer theory is used to establish the electrochemical-thermal coupling model of the battery. The effects of external adiabatic conditions, natural convection conditions, low forced convection conditions and air-cooled conditions on the cell temperature are analyzed. And according to the battery charge under the adiabatic condition, The results show that the air cooling condition has a great effect on the temperature of the single lithium ion battery. The results show that the air cooling condition has a great effect on the conventional serial ventilation heat dissipation system and the designed parallel ventilation heat dissipation system. The heat dissipation effect of the system was compared and analyzed. From the inside temperature of the single cell in the battery pack, From the point of view of surface temperature and different inlet conditions, the heat dissipation effect of the designed parallel ventilation system is better than that of the traditional serial ventilation system, and the energy consumption is less.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM912;U469.72
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 范興明;房冠平;楊家志;張?chǎng)?;動(dòng)力電池組熱分析與風(fēng)冷散熱措施研究[J];電氣應(yīng)用;2016年03期
2 余力;趙米蕓;張慧芳;;能源金融與環(huán)境制約的互動(dòng)效應(yīng)[J];財(cái)經(jīng)科學(xué);2015年02期
3 王發(fā)成;王子冬;胡道中;佟玉琦;高洪波;陳芬;;車(chē)用動(dòng)力電池組集總參數(shù)換熱模型[J];兵工學(xué)報(bào);2014年02期
4 吳澤民;潘香英;馮超;;純電動(dòng)汽車(chē)電池組熱管理系統(tǒng)設(shè)計(jì)[J];汽車(chē)電器;2013年01期
5 唐志軍;朱群志;;熱管理技術(shù)應(yīng)用于動(dòng)力電池的研究[J];電源技術(shù);2013年01期
6 張劍波;盧蘭光;李哲;;車(chē)用動(dòng)力電池系統(tǒng)的關(guān)鍵技術(shù)與學(xué)科前沿[J];汽車(chē)安全與節(jié)能學(xué)報(bào);2012年02期
7 王晉鵬;李陽(yáng)艷;;鋰離子電池三維溫度場(chǎng)分析[J];電源技術(shù);2011年10期
8 吳憩棠;;眾泰朗悅電動(dòng)出租車(chē)自燃事件的反思[J];汽車(chē)與配件;2011年22期
9 丁倩;韓率;;新能源客車(chē)發(fā)展思路探討[J];汽車(chē)與配件;2011年13期
10 劉拓知;;低碳經(jīng)濟(jì)時(shí)代構(gòu)建汽車(chē)綠色消費(fèi)觀念[J];中國(guó)市場(chǎng);2010年45期
相關(guān)會(huì)議論文 前1條
1 梁昌杰;陳方元;秦大同;;混合動(dòng)力汽車(chē)熱管理系統(tǒng)流場(chǎng)和溫度場(chǎng)CFD分析[A];2010年重慶市機(jī)械工程學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2010年
相關(guān)博士學(xué)位論文 前1條
1 饒中浩;基于固液相變傳熱介質(zhì)的動(dòng)力電池?zé)峁芾硌芯縖D];華南理工大學(xué);2013年
相關(guān)碩士學(xué)位論文 前9條
1 徐蒙;磷酸鐵鋰動(dòng)力電池放電過(guò)程電化學(xué)—熱耦合模型研究[D];北京交通大學(xué);2014年
2 許鵬飛;我國(guó)新能源汽車(chē)發(fā)展的路徑和對(duì)策研究[D];浙江工業(yè)大學(xué);2013年
3 曹建華;基于相變材料的鋰離子電池?zé)峁芾硐到y(tǒng)研究[D];清華大學(xué);2013年
4 杜學(xué)龍;電動(dòng)汽車(chē)充電站諧波特性及抑制[D];山東大學(xué);2013年
5 鐘俊夫;混合動(dòng)力車(chē)用鋰電池相變材料—空氣耦合散熱機(jī)理研究[D];湖南大學(xué);2013年
6 任保福;大容量鋰離子動(dòng)力電池充放電過(guò)程熱特性研究[D];北京交通大學(xué);2012年
7 辛乃龍;純電動(dòng)汽車(chē)鋰離子動(dòng)力電池組熱特性分析及仿真研究[D];吉林大學(xué);2012年
8 彭強(qiáng);電動(dòng)汽車(chē)用鋰離子動(dòng)力電池?zé)嵝?yīng)研究[D];吉林大學(xué);2012年
9 黎林;純電動(dòng)汽車(chē)用鋰電池管理系統(tǒng)的研究[D];北京交通大學(xué);2009年
,
本文編號(hào):1601814
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1601814.html
本文選題:鋰離子電池 切入點(diǎn):電化學(xué)-熱特性 出處:《昆明理工大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:電動(dòng)汽車(chē)的發(fā)展,為降低石油消耗和改善空氣質(zhì)量提供了有效的途徑。鋰離子電池因其電壓高、能量大、無(wú)記憶效應(yīng)、綠色環(huán)保等優(yōu)點(diǎn)而成為電動(dòng)汽車(chē)的主要?jiǎng)恿υ粗。鋰離子電池工作過(guò)程受自身與外界環(huán)境溫度的影響較大,溫度較高時(shí),副反應(yīng)加快,造成電池的容量衰減;溫度過(guò)低時(shí),電池功率、容量明顯下降,可能引起電池壽命的降低,埋下安全隱患。因此分析鋰離子電池的熱特性,對(duì)鋰離子電池組進(jìn)行合理的熱管理,對(duì)提高電動(dòng)汽車(chē)的安全性,乃至降低能源消耗,改善環(huán)境質(zhì)量都具有極其重要的意義。本文以18650圓柱鋰離子電池為研究對(duì)象,從單體電池的電化學(xué)、熱特性出發(fā),逐步探究了該電池的充放電特性、以及充放電過(guò)程的產(chǎn)熱規(guī)律和影響因素;為改善其電池組的散熱性能,設(shè)計(jì)了一種并行通風(fēng)散熱系統(tǒng),并采用仿真的手段對(duì)該散熱系統(tǒng)與傳統(tǒng)串行通風(fēng)散熱系統(tǒng)的散熱效果進(jìn)行對(duì)比分析。所做的主要工作如下:(1)以電荷守恒方程、質(zhì)量守恒方程以及電極動(dòng)力學(xué)理論等為基礎(chǔ)建立18650錳酸鋰電池的電化學(xué)模型,對(duì)恒流充放電過(guò)程的電化學(xué)性能進(jìn)行分析。結(jié)果表明:在充電時(shí)電池充電倍率越高,電池充電過(guò)程的“電壓平臺(tái)”越高,平臺(tái)持續(xù)時(shí)間越短,電池的充電容量越小;放電時(shí),電池放電倍率越高,“電壓平臺(tái)”越低且持續(xù)時(shí)間越短,電池放電容量越小。(2)結(jié)合傳熱理論,建立電池電化學(xué)-熱耦合模型,分析了外部絕熱條件、自然對(duì)流條件、低強(qiáng)制對(duì)流條件以及風(fēng)冷條件等因素對(duì)電池溫度的影響,并根據(jù)絕熱條件下電池充、放電過(guò)程的平均溫度變化對(duì)電池的產(chǎn)熱量進(jìn)行計(jì)算。結(jié)果表明風(fēng)冷條件對(duì)單體鋰離子電池的溫度影響較大。(3)對(duì)傳統(tǒng)串行通風(fēng)散熱系統(tǒng)以及所設(shè)計(jì)的并行通風(fēng)散熱系統(tǒng)的散熱效果進(jìn)行對(duì)比分析。從電池組內(nèi)單體電池的內(nèi)部溫度、表面溫度、以及不同入口條件的角度來(lái)看,所設(shè)計(jì)的并行通風(fēng)散熱系統(tǒng)散熱效果均優(yōu)于傳統(tǒng)的串行通風(fēng)方式,且能源消耗較少。
[Abstract]:The development of electric vehicles provides an effective way to reduce oil consumption and improve air quality. Green environmental protection and other advantages have become one of the main power sources for electric vehicles. The working process of lithium-ion batteries is greatly affected by the temperature of their own and outside environment. When the temperature is high, the side effects are accelerated, resulting in the capacity attenuation of the battery, and when the temperature is too low, The decrease of battery power and capacity may lead to the decrease of battery life and the hidden danger of safety. Therefore, the thermal characteristics of lithium ion battery are analyzed and the reasonable thermal management of lithium ion battery pack is carried out to improve the safety of electric vehicle. It is of great significance to reduce energy consumption and improve environmental quality. In this paper, the charge and discharge characteristics of 18650 cylindrical lithium ion battery are investigated step by step from the electrochemical and thermal characteristics of the single cell. In order to improve the heat dissipation performance of the battery pack, a parallel ventilation heat dissipation system is designed. By means of simulation, the heat dissipation effect of this heat dissipation system is compared with that of the traditional serial ventilation heat dissipation system. The main work done is as follows: 1) the charge conservation equation is used. On the basis of mass conservation equation and electrode dynamics theory, the electrochemical model of 18650 lithium manganese oxide battery was established, and the electrochemical performance of constant current charge-discharge process was analyzed. The results show that the higher the charge rate of the battery is, the higher the charge rate is. The higher the "voltage platform" of the battery charging process, the shorter the duration of the platform, the smaller the charging capacity of the battery, and the higher the discharge rate of the battery during discharge, the lower the "voltage platform" and the shorter the duration. The smaller the discharge capacity of the battery is, the more the heat transfer theory is used to establish the electrochemical-thermal coupling model of the battery. The effects of external adiabatic conditions, natural convection conditions, low forced convection conditions and air-cooled conditions on the cell temperature are analyzed. And according to the battery charge under the adiabatic condition, The results show that the air cooling condition has a great effect on the temperature of the single lithium ion battery. The results show that the air cooling condition has a great effect on the conventional serial ventilation heat dissipation system and the designed parallel ventilation heat dissipation system. The heat dissipation effect of the system was compared and analyzed. From the inside temperature of the single cell in the battery pack, From the point of view of surface temperature and different inlet conditions, the heat dissipation effect of the designed parallel ventilation system is better than that of the traditional serial ventilation system, and the energy consumption is less.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM912;U469.72
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 范興明;房冠平;楊家志;張?chǎng)?;動(dòng)力電池組熱分析與風(fēng)冷散熱措施研究[J];電氣應(yīng)用;2016年03期
2 余力;趙米蕓;張慧芳;;能源金融與環(huán)境制約的互動(dòng)效應(yīng)[J];財(cái)經(jīng)科學(xué);2015年02期
3 王發(fā)成;王子冬;胡道中;佟玉琦;高洪波;陳芬;;車(chē)用動(dòng)力電池組集總參數(shù)換熱模型[J];兵工學(xué)報(bào);2014年02期
4 吳澤民;潘香英;馮超;;純電動(dòng)汽車(chē)電池組熱管理系統(tǒng)設(shè)計(jì)[J];汽車(chē)電器;2013年01期
5 唐志軍;朱群志;;熱管理技術(shù)應(yīng)用于動(dòng)力電池的研究[J];電源技術(shù);2013年01期
6 張劍波;盧蘭光;李哲;;車(chē)用動(dòng)力電池系統(tǒng)的關(guān)鍵技術(shù)與學(xué)科前沿[J];汽車(chē)安全與節(jié)能學(xué)報(bào);2012年02期
7 王晉鵬;李陽(yáng)艷;;鋰離子電池三維溫度場(chǎng)分析[J];電源技術(shù);2011年10期
8 吳憩棠;;眾泰朗悅電動(dòng)出租車(chē)自燃事件的反思[J];汽車(chē)與配件;2011年22期
9 丁倩;韓率;;新能源客車(chē)發(fā)展思路探討[J];汽車(chē)與配件;2011年13期
10 劉拓知;;低碳經(jīng)濟(jì)時(shí)代構(gòu)建汽車(chē)綠色消費(fèi)觀念[J];中國(guó)市場(chǎng);2010年45期
相關(guān)會(huì)議論文 前1條
1 梁昌杰;陳方元;秦大同;;混合動(dòng)力汽車(chē)熱管理系統(tǒng)流場(chǎng)和溫度場(chǎng)CFD分析[A];2010年重慶市機(jī)械工程學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2010年
相關(guān)博士學(xué)位論文 前1條
1 饒中浩;基于固液相變傳熱介質(zhì)的動(dòng)力電池?zé)峁芾硌芯縖D];華南理工大學(xué);2013年
相關(guān)碩士學(xué)位論文 前9條
1 徐蒙;磷酸鐵鋰動(dòng)力電池放電過(guò)程電化學(xué)—熱耦合模型研究[D];北京交通大學(xué);2014年
2 許鵬飛;我國(guó)新能源汽車(chē)發(fā)展的路徑和對(duì)策研究[D];浙江工業(yè)大學(xué);2013年
3 曹建華;基于相變材料的鋰離子電池?zé)峁芾硐到y(tǒng)研究[D];清華大學(xué);2013年
4 杜學(xué)龍;電動(dòng)汽車(chē)充電站諧波特性及抑制[D];山東大學(xué);2013年
5 鐘俊夫;混合動(dòng)力車(chē)用鋰電池相變材料—空氣耦合散熱機(jī)理研究[D];湖南大學(xué);2013年
6 任保福;大容量鋰離子動(dòng)力電池充放電過(guò)程熱特性研究[D];北京交通大學(xué);2012年
7 辛乃龍;純電動(dòng)汽車(chē)鋰離子動(dòng)力電池組熱特性分析及仿真研究[D];吉林大學(xué);2012年
8 彭強(qiáng);電動(dòng)汽車(chē)用鋰離子動(dòng)力電池?zé)嵝?yīng)研究[D];吉林大學(xué);2012年
9 黎林;純電動(dòng)汽車(chē)用鋰電池管理系統(tǒng)的研究[D];北京交通大學(xué);2009年
,本文編號(hào):1601814
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1601814.html