改進(jìn)粒子群PI控制在三相PWM整流器中的應(yīng)用
本文選題:三相VSR 切入點(diǎn):電網(wǎng)不平衡 出處:《湘潭大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著電力電子技術(shù)的發(fā)展和科學(xué)技術(shù)的進(jìn)步,用電設(shè)備對(duì)供電電源質(zhì)量的要求也越來(lái)越高,三相電壓型PWM整流器(三相VSR)因具備直流高壓恒定輸出、能量雙向流動(dòng)、無(wú)污染、單位功率因素運(yùn)行等一系列優(yōu)點(diǎn)被廣泛應(yīng)用在變流裝置中。當(dāng)三相PWM整流器運(yùn)行在電網(wǎng)平衡的條件下具備良好的運(yùn)行性能。然而在電力電子變流裝置運(yùn)行過(guò)程中,由于三相負(fù)載不平衡、單相大容量負(fù)載的使用、不對(duì)稱故障等原因,不平衡現(xiàn)象是難以避免的。若忽略實(shí)際存在的不平衡條件,只采用傳統(tǒng)的三相VSR控制策略,會(huì)在其網(wǎng)側(cè)產(chǎn)生負(fù)序量,導(dǎo)致三相電流不平衡,造成三相VSR裝置運(yùn)行性能下降或不能正常運(yùn)行的情況,嚴(yán)重時(shí)甚至燒毀裝置。通常情況下,三相VSR運(yùn)行時(shí)存在兩方面的不平衡:一是三相電網(wǎng)本身存在不平衡,如相位、幅值不對(duì)稱;二是三相VSR本身的參數(shù)不對(duì)稱,導(dǎo)致系統(tǒng)運(yùn)行不平衡。針對(duì)這一問(wèn)題,本文將從不平衡條件下對(duì)三相VSR的控制策略出發(fā),以研究改善其控制性能為目的,從以下幾個(gè)方面進(jìn)行論述:首先,對(duì)平衡條件下的三相電壓型PWM整流器運(yùn)行系統(tǒng)進(jìn)行數(shù)學(xué)模型的建立和分析,然后給出其在三相靜止abc坐標(biāo)系下的數(shù)學(xué)模型轉(zhuǎn)換到兩相旋轉(zhuǎn)dq坐標(biāo)系下的過(guò)程。然后對(duì)不平衡條件下的三相VSR進(jìn)行建模,分析了幾種不平衡控制策略的優(yōu)缺點(diǎn)。因提取的正、負(fù)序分量的諧波含量大小將對(duì)后續(xù)系統(tǒng)控制效果產(chǎn)生很大影響,所以選擇一個(gè)好的正、負(fù)序量提取方法尤為重要。本文對(duì)比了兩種不平衡條件下三相VSR正、負(fù)序量分離提取的方法(陷波器法和延時(shí)法),并分析其優(yōu)缺點(diǎn),選取了一種在理想狀態(tài)下效果更好的方法(延時(shí)法)作為本文提取正負(fù)序量的方法。其次,本文選取了PI控制器作為調(diào)節(jié)器。PI控制器具有較強(qiáng)的魯棒性、可靠性高且算法簡(jiǎn)單等優(yōu)點(diǎn)。但在控制過(guò)程中,其參數(shù)整定過(guò)程繁雜,傳統(tǒng)整定結(jié)果難以達(dá)到最優(yōu),最終導(dǎo)致控制系統(tǒng)性能不良,易產(chǎn)生超調(diào)及震蕩。針對(duì)此問(wèn)題,本文引入一種從平衡局部和全局搜索能力出發(fā)的改進(jìn)粒子群優(yōu)化算法,用于改善PI控制器的調(diào)節(jié)性能,使三相VSR達(dá)到更好的穩(wěn)態(tài)性能。最后,在Matlab中首先驗(yàn)證了改進(jìn)粒子群算法相比于原始粒子群算法的優(yōu)越性;然后搭建了基于幾種不平衡控制策略下三相VSR運(yùn)行的仿真模型,對(duì)比應(yīng)用改進(jìn)粒子群PI控制器、傳統(tǒng)PI控制器及標(biāo)準(zhǔn)粒子群PI控制器的效果,驗(yàn)證了應(yīng)用本文所提改進(jìn)粒子群PI控制器對(duì)三相VSR控制具有更好的效果。
[Abstract]:With the development of power electronic technology and the progress of science and technology, electrical equipment for power quality requirements are increasingly high, the three-phase voltage type PWM rectifier (phase VSR) with constant DC voltage output, two-way flow of energy, no pollution, a series of advantages of unit power factor operation is widely used in variable flow device. When the three-phase PWM rectifier operation has good performance in power balance condition. However, in the power electronic equipment in the process of operation, due to the unbalance of three-phase load, using single-phase large capacity load, asymmetric fault, imbalance phenomenon is difficult to avoid. If we ignore the actual existence of the unbalanced condition the use of three-phase VSR traditional control strategy can produce negative amount in the network side, resulting in unbalanced three-phase current, the operation performance of the three-phase VSR device decreased or not the normal running. Even when the serious situation, burn the device. Typically, the VSR runtime three-phase imbalance exists in two aspects: one is the three-phase power grid itself is not balanced, such as phase and amplitude asymmetry; two parameters of asymmetric three-phase VSR itself, so that the system operation is not balanced. In order to solve this problem, this paper will be the starting control strategy of VSR never three-phase equilibrium conditions, to improve the control performance for the purpose of research, discusses from the following aspects: firstly, the establishment and analysis of three-phase voltage type PWM rectifier system under equilibrium conditions of the mathematical model, and then gives the conversion in three-phase ABC coordinate system of the mathematical model of the two-phase process the rotating dq coordinate system. Then the modeling of three phase unbalance under the condition of VSR, analyses the advantages and disadvantages of unbalanced control strategy. Because the extraction of positive and negative sequence components of the harmonic content of size To follow the effect of control system have a great impact, so choose a good positive and negative sequence extraction method is particularly important. This paper compares two kinds of unbalanced conditions of three-phase VSR positive and negative sequence separation method (notch filter and delay method), and analyze its advantages and disadvantages, select a a method is better in ideal condition (delay method) as the extraction method of positive and negative sequence quantities. Secondly, this paper selects the PI controller as the regulator.PI controller has strong robustness, high reliability and simple algorithm. But in the control process, the parameter tuning process is complicated, the traditional setting it is difficult to achieve optimal results, resulting in poor performance of control system, easy to overshoot and oscillation. To solve this problem, this paper introduces a modified particle starting from the balance of local and global search ability of the swarm optimization algorithm was used to improve the PI controller Adjusting performance and steady-state performance of the three-phase VSR achieve better. Finally, first in the Matlab to verify the superiority of the improved particle swarm algorithm compared to the original particle swarm algorithm; and then build the simulation model of three-phase unbalance control based on VSR operation strategy under several contrast application of improved particle swarm optimization PI controller, PI controller and traditional standard particle swarm optimization PI controller, verify the application of the proposed improved particle swarm PI controller has better control effect on the three-phase VSR.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18;TM461
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王杰;李慧慧;彭金柱;;一種擬隨機(jī)初始化模擬退火粒子群算法[J];鄭州大學(xué)學(xué)報(bào)(理學(xué)版);2016年03期
2 肖理慶;王化祥;;利用改進(jìn)粒子群算法優(yōu)化ERT有限元模型[J];計(jì)算機(jī)應(yīng)用研究;2017年05期
3 姜衛(wèi)東;吳志清;李王敏;佘陽(yáng)陽(yáng);胡楊;;電網(wǎng)不對(duì)稱時(shí)抑制負(fù)序電流并網(wǎng)逆變器的控制策略[J];電工技術(shù)學(xué)報(bào);2015年16期
4 年珩;沈永波;宋亦鵬;;不平衡及諧波電網(wǎng)電壓下并網(wǎng)逆變器的直接功率控制策略[J];電網(wǎng)技術(shù);2014年06期
5 鄭征;張子偉;張振華;;電網(wǎng)不平衡時(shí)PWM整流器正負(fù)序分量計(jì)算方法[J];電力電子技術(shù);2014年05期
6 杜雄;郭宏達(dá);孫鵬菊;周雒維;;基于ANF-PLL的電網(wǎng)電壓基波正負(fù)序分離方法[J];中國(guó)電機(jī)工程學(xué)報(bào);2013年27期
7 郭旭剛;高增偉;尹靖元;金新民;馬添翼;;不平衡電網(wǎng)電壓下的PWM整流器功率預(yù)測(cè)[J];電網(wǎng)技術(shù);2013年08期
8 呂學(xué)志;康忠健;梅永超;;基于無(wú)源性理論的電壓不平衡條件下PWM整流器非線性控制策略[J];電力系統(tǒng)保護(hù)與控制;2013年06期
9 彭樂(lè);張立民;鄧向陽(yáng);;基于種群多樣性模糊控制的粒子群算法[J];計(jì)算機(jī)仿真;2012年04期
10 程啟明;程尹曼;薛陽(yáng);胡曉青;王映斐;;三相電壓源型PWM整流器控制方法的發(fā)展綜述[J];電力系統(tǒng)保護(hù)與控制;2012年03期
相關(guān)博士學(xué)位論文 前1條
1 尹忠剛;用于變頻調(diào)速裝置的三相PWM整流器若干技術(shù)問(wèn)題研究[D];西安理工大學(xué);2009年
相關(guān)碩士學(xué)位論文 前8條
1 田園;電網(wǎng)電壓不平衡條件下三相PWM整流器控制技術(shù)研究[D];湖南大學(xué);2015年
2 徐楚彥;PWM整流器的不平衡控制策略研究[D];華南理工大學(xué);2014年
3 丁凱;不平衡電網(wǎng)下三相PWM整流器的自適應(yīng)滑?刂芠D];哈爾濱工業(yè)大學(xué);2014年
4 王若宇;電網(wǎng)不平衡條件下三相PWM整流器控制及并聯(lián)研究[D];東北大學(xué);2014年
5 皇甫星星;三相電壓型PWM整流器的研究與設(shè)計(jì)[D];南京航空航天大學(xué);2013年
6 鄧悅;電壓型四象限PWM整流器研究與設(shè)計(jì)[D];華中科技大學(xué);2013年
7 劉永生;電網(wǎng)電壓不平衡時(shí)PWM整流器控制策略研究[D];西南交通大學(xué);2011年
8 譚廣軍;電網(wǎng)不平衡條件下PWM整流器控制技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2008年
,本文編號(hào):1585263
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1585263.html