模塊化容錯(cuò)永磁游標(biāo)直線電機(jī)的設(shè)計(jì)與分析
本文選題:永磁直線電機(jī) 切入點(diǎn):游標(biāo)電機(jī) 出處:《江蘇大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:現(xiàn)階段,我國(guó)已經(jīng)進(jìn)入了城市軌道交通建設(shè)高速發(fā)展的時(shí)代,未來(lái)城市軌道交通的發(fā)展方向之一就是建立綠色環(huán)保的城市軌道交通系統(tǒng)。永磁直線電機(jī)因其高功率密度和效率受到廣泛關(guān)注,其中,初級(jí)永磁型直線電機(jī)由于其繞組和永磁體都放置在初級(jí)短動(dòng)子上,而長(zhǎng)定子部分僅由齒槽結(jié)構(gòu)的導(dǎo)磁材料構(gòu)成,適用于長(zhǎng)定子的軌道交通領(lǐng)域。本文以長(zhǎng)定子永磁型游標(biāo)直線電機(jī)為研究對(duì)象,提出一種模塊化容錯(cuò)永磁游標(biāo)直線電機(jī)。建立該電機(jī)的有限元仿真模型分析了其電磁特性;并且構(gòu)建電機(jī)熱仿真模型,分析了其熱特性;設(shè)計(jì)加工了實(shí)驗(yàn)樣機(jī),驗(yàn)證了所提出電機(jī)性能,為進(jìn)一步研究該型直線電機(jī)夯實(shí)了理論基礎(chǔ)。本文所研究的主要內(nèi)容如下:1.分析闡述了磁場(chǎng)調(diào)制型電機(jī)的結(jié)構(gòu)特點(diǎn)以及工作原理,主要包括磁齒輪電機(jī)及永磁游標(biāo)電機(jī)。通過(guò)對(duì)氣隙磁導(dǎo)進(jìn)行數(shù)學(xué)解析詳細(xì)分析了磁場(chǎng)調(diào)制的原理,并通過(guò)定子永磁型游標(biāo)電機(jī)進(jìn)行仿真驗(yàn)證。2.針對(duì)現(xiàn)有的長(zhǎng)定子永磁型游標(biāo)直線電機(jī)的優(yōu)缺點(diǎn),提出一種模塊化動(dòng)子結(jié)構(gòu),實(shí)現(xiàn)了電機(jī)相鄰相之間的磁解耦,降低了相間互感,提升了電機(jī)的容錯(cuò)性能。同時(shí),采用新型永磁體陣列結(jié)構(gòu),降低了永磁體邊緣漏磁,增加了氣隙磁通密度,提高了永磁體的利用率,進(jìn)一步提升了電機(jī)推力性能。3.分析研究了模塊化容錯(cuò)永磁游標(biāo)直線電機(jī)的模塊化動(dòng)子結(jié)構(gòu)和新型永磁體陣列結(jié)構(gòu)。介紹該電機(jī)基本結(jié)構(gòu),并闡述其工作原理。利用有限元仿真軟件對(duì)電機(jī)的電磁特性進(jìn)行分析,包括電機(jī)的永磁磁場(chǎng)特性、反電動(dòng)勢(shì)特性、電感特性、定位力特性及推力特性。4.針對(duì)本文所提出的電機(jī)結(jié)構(gòu),對(duì)其進(jìn)行結(jié)構(gòu)優(yōu)化設(shè)計(jì),包括不同槽極配比,永磁體結(jié)構(gòu)參數(shù)優(yōu)化設(shè)計(jì),動(dòng)定子結(jié)構(gòu)參數(shù)優(yōu)化設(shè)計(jì),最終確定了樣機(jī)加工的最佳結(jié)構(gòu),并且與現(xiàn)有電機(jī)結(jié)構(gòu)性能進(jìn)行對(duì)比分析。5.基于ANSYS Workbench對(duì)電機(jī)進(jìn)行溫度場(chǎng)有限元仿真計(jì)算,結(jié)合電機(jī)實(shí)際工作特性仿真計(jì)算得到電機(jī)各個(gè)部分的溫度分布,并分析研究電機(jī)的溫度特性。
[Abstract]:At this stage, China has entered the era of rapid development of urban rail transit construction. One of the development directions of urban rail transit in the future is to establish a green urban rail transit system. The permanent magnet linear motor (PMLM) has attracted wide attention because of its high power density and efficiency. Since the winding and permanent magnet of the primary permanent magnet linear motor are placed on the primary short actuator, the long stator part is only composed of the magnetic conductivity material of the tooth slot structure. This paper presents a modularized fault-tolerant permanent magnet Vernier linear motor based on permanent magnet Vernier linear motor with long stator. The finite element simulation model of this motor is established to analyze its electromagnetic characteristics. The thermal simulation model of the motor is constructed, and its thermal characteristics are analyzed, and the experimental prototype is designed and processed to verify the performance of the proposed motor. In order to further study the theoretical foundation of this type of linear motor, the main contents of this paper are as follows: 1. The structure characteristics and working principle of the magnetic field modulated motor are analyzed and expounded. It mainly includes magnetic gear motor and permanent magnet Vernier motor. The principle of magnetic field modulation is analyzed in detail through mathematical analysis of air gap magnetic conductance. According to the advantages and disadvantages of the existing long-stator permanent magnet Vernier linear motor, a modularized moving substructure is proposed, which realizes the magnetic decoupling between the adjacent phases of the motor and reduces the mutual inductance between phases. The fault tolerant performance of the motor is improved. At the same time, the new permanent magnet array structure is adopted, which reduces the flux leakage at the edge of the permanent magnet, increases the air gap flux density, and improves the utilization ratio of the permanent magnet. Furthermore, the thrust performance of the motor is improved. 3. The modularized moving substructure and the new permanent magnet array structure of the modularized fault-tolerant permanent magnet Vernier linear motor are analyzed and studied. The basic structure of the motor is introduced. The electromagnetic characteristics of the motor are analyzed by using the finite element simulation software, including the permanent magnet magnetic field characteristics of the motor, the characteristics of the back EMF, the inductance characteristics, According to the motor structure proposed in this paper, the structure optimization design is carried out, including the optimum design of structure parameters of permanent magnet, the optimum design of structure parameters of permanent magnet, the optimum design of structure parameters of moving stator, the optimum design of structure of permanent magnet, the optimum design of structure of permanent magnet, and the optimum design of structure of motor. Finally, the optimal structure of the prototype machining is determined, and compared with the existing motor structure. 5. The temperature field of the motor is simulated by finite element method based on ANSYS Workbench. The temperature distribution of each part of the motor is calculated by simulation combined with the actual working characteristics of the motor, and the temperature characteristics of the motor are analyzed and studied.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM359.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 杜懌;鄒春花;朱孝勇;肖鳳;孫宇新;;初級(jí)永磁型游標(biāo)直線電機(jī)繞組連接及其電磁特性比較[J];電工技術(shù)學(xué)報(bào);2017年03期
2 李莉;張瑞華;杜玉梅;葛瓊璇;王珂;;直線電機(jī)軌道交通牽引系統(tǒng)研究與試驗(yàn)[J];機(jī)車電傳動(dòng);2016年06期
3 徐亮;劉國(guó)海;趙文祥;吉敬華;張步峰;;容錯(cuò)式永磁游標(biāo)電機(jī)關(guān)鍵參數(shù)分析及實(shí)驗(yàn)研究[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年18期
4 孫海濤;陳燕;段巍釗;馬春燕;竇銀科;;一種永磁式開關(guān)磁阻直線電機(jī)的設(shè)計(jì)與有限元分析[J];微特電機(jī);2016年03期
5 李小慶;朱景偉;孫軍浩;曹林柏;周博文;;雙繞組永磁容錯(cuò)電機(jī)矢量控制系統(tǒng)研究[J];電工技術(shù)學(xué)報(bào);2016年05期
6 趙玫;鄒繼斌;蘇明煜;謝其峰;王孟瑞;;橫向磁通永磁直線電機(jī)研究與發(fā)展[J];電氣工程學(xué)報(bào);2016年02期
7 於鋒;程明;夏子朋;鄒國(guó)棠;;3種諧波電流注入模式下的磁通切換永磁電機(jī)缺相容錯(cuò)控制[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年03期
8 彭兵;張囡;夏加寬;沈麗;張志峰;孫宜標(biāo);;永磁直線電機(jī)端部效應(yīng)力的解析計(jì)算[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年02期
9 蔣雪峰;黃文新;郝振洋;曹瑞武;李偉;盛燕;姜文;;雙繞組永磁容錯(cuò)電機(jī)的余度電驅(qū)動(dòng)系統(tǒng)[J];電工技術(shù)學(xué)報(bào);2015年06期
10 韓雪巖;祁坤;張哲;賈建國(guó);;永磁同步直線電機(jī)磁阻力分析及抑制措施[J];電工技術(shù)學(xué)報(bào);2015年06期
相關(guān)博士學(xué)位論文 前2條
1 王利利;磁場(chǎng)調(diào)制型永磁齒輪與低速電機(jī)的研究[D];浙江大學(xué);2012年
2 杜世勤;新型磁齒輪復(fù)合電機(jī)的設(shè)計(jì)研究[D];上海大學(xué);2010年
相關(guān)碩士學(xué)位論文 前1條
1 徐云龍;高速永磁電機(jī)損耗計(jì)算與熱分析[D];沈陽(yáng)工業(yè)大學(xué);2009年
,本文編號(hào):1579582
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1579582.html