兩種不同結(jié)構(gòu)中溫固體氧化物燃料電池陰極材料的性能研究
本文關(guān)鍵詞: 固體氧化物燃料電池 雙鈣鈦礦結(jié)構(gòu) K_2NiF_4型結(jié)構(gòu) 陰極 穩(wěn)定性 熱膨脹 電導(dǎo)率 電化學(xué)性能 出處:《吉林大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:固體氧化物燃料電池(SOFC)是一種綠色高效的發(fā)電裝置,具有非常好的發(fā)展前景。與傳統(tǒng)的高溫SOFC技術(shù)相比,IT-SOFC有很多優(yōu)點(diǎn),目前發(fā)展的主流已經(jīng)慢慢轉(zhuǎn)移到IT-SOFC技術(shù)上。所以,研究與開發(fā)可以應(yīng)用在IT-SOFC上的新型陰極材料是當(dāng)前研究的主要方向之一。采用固相法合成了單相雙鈣鈦礦結(jié)構(gòu)氧化物Sr_2Co_(1-x )Ti_xFeO_(5+δ)(SCTF,x=0.2,0.4,0.6,0.8)。它們均為立方晶系,空間群為Pm-3m,δ值分別為0.37,0.43和0.48,且均與常用電解質(zhì)材料在950oC下具有良好的化學(xué)兼容性。x=0.2與x=0.4樣品在高溫下出現(xiàn)了Co的α脫附峰,Fe的α脫附峰以及Co的β脫附峰;x=0.6與x=0.8樣品則只觀察到了Fe的α脫附峰和Co的β脫附峰,無Co的α脫附峰出現(xiàn)。熱重與熱膨脹測試結(jié)果表明,無自旋態(tài)轉(zhuǎn)變Ti~(4+)的引入改變了樣品中過渡金屬離子的價態(tài)分布,提高了SCTF的穩(wěn)定性,同時降低了SCTF的熱膨脹系數(shù)。電導(dǎo)率測試結(jié)果表明,SCTF(x=0.2,0.4,0.6,0.8)樣品最大電導(dǎo)率分別為95.5S cm~(-1)(350oC),44.7Scm~(-1)(375oC),24.1Scm~(-1)(400oC)和7.5 S cm~(-1)(475oC)。800oC時SCTF(x=0.2,0.4,0.6,0.8)陰極在SDC電解質(zhì)上的ASR值分別為0.040Ωcm~2,0.043Ωcm~2,0.052Ωcm~2和0.069Ωcm~2;以SCTF(x=0.2,0.4,0.6,0.8)為陰極,NiO-SDC為陽極,SDC電解質(zhì)為支撐的單電池,最大功率密度分別為402 m W cm~(-2),332 m W cm~(-2),293 m W cm~(-2)和225 m W cm~(-2),Ti的引入降低了材料的電化學(xué)性能。綜上所述,對Sr_2CoFeO_(5+δ)材料進(jìn)行B位摻雜Ti,成功的降低了其熱膨脹系數(shù),提高了穩(wěn)定性,但是對材料的電學(xué)性能和電化學(xué)性能產(chǎn)生了一定的負(fù)面影響,SCTF(x=0.2,0.4,0.6)系列材料有潛力作為IT-SOFC的陰極候選材料。采用固相法合成了單相K_2NiF_4型結(jié)構(gòu)的(LaSr)_xCoO_(4+δ)(x=1,0.95)金屬氧化物材料。該材料為四方晶系,空間群為I4/mmm,且與常用電解質(zhì)材料在950oC下具有良好的化學(xué)兼容性。(LaSr)_xCoO_(4+δ)(x=1,0.95)樣品在30oC-1000oC溫度范圍內(nèi)的失重百分比分別為0.42%和0.22%,平均熱膨脹系數(shù)分別為15.2×10~(-6)K~(-1)和16.2×10~(-6) K~(-1),證明LSC材料熱穩(wěn)定性良好,熱膨脹系數(shù)比較接近常用電解質(zhì)材料的熱膨脹系數(shù)。A位缺位的引入進(jìn)一步提高了材料的穩(wěn)定性,而樣品的熱膨脹系數(shù)則略微增大。電導(dǎo)率測試結(jié)果表明,(LaSr)_xCoO_(4+δ)(x=1,0.95)樣品最大電導(dǎo)率分別為202Scm~(-1)(850oC)和182Scm~(-1)(850oC),導(dǎo)電性能良好,滿足IT-SOFC陰極材料電導(dǎo)率的要求。800oC時(LaSr)_xCoO_(4+δ)(x=1,0.95)陰極在LSGM電解質(zhì)上的ASR值分別為0.143Ωcm~2和0.097Ωcm~2。以(LaSr)x CoO_(4+δ)(x=1,0.95)為陰極,NiO-SDC為陽極,LSGM電解質(zhì)為支撐的單電池,最大功率密度分別為386mWcm~(-2)和463mWcm~(-2),A位缺位的引入改善了材料的電化學(xué)性能。綜上所述,LaSrCoO_(4+δ)樣品電學(xué)性能和熱學(xué)性能優(yōu)良,但是其電化學(xué)性能不佳,需要優(yōu)化。所以,我們在LaSrCoO_(4+δ)材料中引入A位缺位,降低了其界面阻抗,提高了單電池的輸出功率密度,明顯改善了電化學(xué)性能。
[Abstract]:Solid oxide fuel cell (SOFC) is a kind of green and efficient power generation device, which has a good development prospect. Compared with the traditional high-temperature SOFC technology, IT-SOFC has many advantages. At present, the mainstream of development has gradually shifted to IT-SOFC technology. Research and development of new cathode materials that can be used in IT-SOFC is one of the main research directions at present. Single phase double perovskite structure oxide Sr_2Co_(1-x has been synthesized by solid phase method. Ti_xFeO_(5 未. They all belong to cubic system, space group is Pm-3mand 未 values are 0.37 ~ 0.43 and 0.48, respectively. In addition, the 偽 -desorption peaks of Co were observed at high temperature for both samples with good chemical compatibility with common electrolytes at 950oC. The 偽 desorption peak of Fe and the 尾 desorption peak of Co; The 偽 -desorption peaks of Fe and 尾 -desorption peaks of Co were observed only in the samples of 0.6 and 0.8, and the 偽 -desorption peaks of no Co were observed. The results of thermogravimetric and thermal expansion tests showed that the 偽 -desorption peaks of Fe and Co were observed. The introduction of Ti~(4) changed the valence distribution of transition metal ions and improved the stability of SCTF. At the same time, the thermal expansion coefficient of SCTF was reduced. The maximum conductivities of the samples were 95.5 S cm ~ (-1) ~ 350oC ~ (-1) ~ (44.7Scm ~ (-1)) ~ (375oC), respectively. 24.1 ScmC-1 (400oC) and 7.5ScmC1 (475oC0. 800oC). The ASR values of the cathode on SDC electrolyte are 0.040 惟 cm ~ (-1) 20.043 惟 路cm ~ (-1) ~ 20.052 惟 cm~2 and 0.069 惟 cm ~ (2) ~ (2), respectively. The single cell supported by the electrolyte of SDC is NiO-SDC. The maximum power density is 402 MW / cm ~ (2) and 332 MW / cm ~ (-2) respectively. The introduction of 293MW / cm ~ (-2) and 225MW / cm ~ (2 +) Ti reduced the electrochemical properties of the materials. The thermal expansion coefficient of Sr_2CoFeO_(5 未 is reduced and the stability is improved by doping Ti in B site. However, there are some negative effects on the electrical and electrochemical properties of the materials. (0.6) A series of materials have the potential to be cathode candidates for IT-SOFC. The single-phase K _ S _ 2NiF _ s _ 4 structure has been synthesized by solid state method. X1. The material is tetragonal and the space group is I4 / mmm. And it has good chemical compatibility with common electrolyte materials at 950oC. The percentage of weight loss in the temperature range of 30oC-1000oC was 0.42% and 0.22%, respectively. The average coefficient of thermal expansion is 15.2 脳 10 ~ (-1) and 16.2 脳 10 ~ (-1) respectively, which indicates that the thermal stability of LSC is good. The thermal expansion coefficient is close to that of the common electrolyte material. The introduction of the vacancy of position A further improves the stability of the material, while the thermal expansion coefficient of the sample increases slightly. The results of conductivity test show that the thermal expansion coefficient of the sample is similar to that of the electrolyte material. LaSrMr. XCoO\\\. The maximum electrical conductivities of the samples are 2022 ScmC-1 (850oC) and 182ScmP- (850oC), respectively, and the conductivity of the samples is good. The electrical conductivity of IT-SOFC cathode material is satisfied with the requirement of. 800oC. The ASR values of cathode on LSGM electrolyte are 0.143 惟 cm~2 and 0.097 惟 cm ~ (2), respectively. The maximum power density of a single cell supported by cathode NiO-SDC and anode LSGM electrolyte is 386mW / cm ~ (-2) and 463 MW / cm ~ (-2) respectively. The introduction of A vacancy improves the electrochemical performance of the material. In summary, the electrical and thermal properties of LaSrCoO4 未) samples are excellent, but their electrochemical properties are poor and need to be optimized. The introduction of A-site vacancy in LaSrCoO_(4 未) material reduces the interface impedance, increases the output power density of single cell, and improves the electrochemical performance.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM911.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王營茹;陸曉華;林莉;;陰極材料對模擬土壤淋洗液中六氯苯電化學(xué)降解的影響[J];環(huán)境科學(xué)與技術(shù);2011年09期
2 林傳善;;退鉻陰極的改進(jìn)[J];電鍍與精飾;1985年04期
3 肖海明;;中南工大惰性陰極材料研究取得進(jìn)展[J];輕金屬;1987年11期
4 Б.Ф.К.КОВАЛЕВ;昱中樂;;從鹵熔物中提煉鎢鉬時陰極材料的選擇[J];鉬業(yè)經(jīng)濟(jì)技術(shù);1989年04期
5 夏定國,,魏秋明,朱時珍,劉慶國;高溫固體氧化物燃料電池中的陰極材料[J];中國稀土學(xué)報(bào);1994年03期
6 江金國,陳文,徐慶,黃端平,鄭錦霞;中低溫固體氧化物燃料電池陶瓷陰極材料[J];材料導(dǎo)報(bào);2002年05期
7 呂振剛,郭瑞松;鈣鈦礦型中溫固體氧化物燃料電池陰極材料[J];中國陶瓷;2004年02期
8 劉榮輝,馬文會,王華,楊斌;固體氧化物燃料電池陰極材料的研究進(jìn)展[J];云南化工;2005年03期
9 黃端平;徐慶;陳文;張楓;;新型中溫固體氧化物燃料電池陰極材料的研究[J];陶瓷學(xué)報(bào);2006年03期
10 張正宇;李素珍;;陰極材料含鑭復(fù)合氧化物的電催化特性[J];現(xiàn)代技術(shù)陶瓷;2007年02期
相關(guān)會議論文 前10條
1 陳大英;李福q
本文編號:1474136
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1474136.html