交流輸電線路雙端行波測距方法研究
本文關(guān)鍵詞: 輸電線路 故障測距 行波 神經(jīng)網(wǎng)絡(luò) 小波變換 出處:《山東大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:電力系統(tǒng)的容量不斷擴(kuò)大和電網(wǎng)區(qū)域快速擴(kuò)展,使電網(wǎng)的管理和運(yùn)行控制變得更加復(fù)雜,其安全性及穩(wěn)定性問題也日漸凸顯。電力系統(tǒng)故障所造成的破壞的后果往往與電力故障被處理及恢復(fù)的速度相關(guān)。如果故障得不到及時(shí)處理,其造成的危害可能非常嚴(yán)重。故障發(fā)生后實(shí)現(xiàn)快速、精確的故障定位,能最小范圍的隔離故障元件,實(shí)現(xiàn)最大范圍的正常供電。所以,故障定位的速度和準(zhǔn)度對電力系統(tǒng)經(jīng)濟(jì)性、穩(wěn)定性和安全性都至關(guān)重要。本文圍繞著利用衰減和變形的行波波頭信息來進(jìn)行輸電線路故障測距的思路展開研究,以實(shí)現(xiàn)精確故障測距為宗旨,并且研究其在各種不利因素的影響下穩(wěn)定工作的可靠性。本文所做的具體工作內(nèi)容如下:(1)行波原理的基本分析及其相關(guān)特性研究通過MATLAB對實(shí)際輸電線路系統(tǒng)進(jìn)行仿真分析,得到線路依頻參數(shù),通過解耦分析,最終得到模量參數(shù)的變化趨勢。零模電阻、電感參數(shù)對零模行波分量有比較大的影響,當(dāng)頻率增大時(shí),零模電阻值正相關(guān)變大,而電感值為負(fù)相關(guān)變小;但是線模電感幾乎不變化,線模電阻值正相關(guān)緩慢地變大。從而零模分量的波速度及衰減常數(shù)受頻率的影響比線模的要大的多,即零模分量在傳播過程中波速更慢,衰減及變形程度也更大。(2)輸電線路雙端行波測距方法零模故障分量在故障點(diǎn)產(chǎn)生行波為階躍信號(hào),然后沿著輸電線路向線路兩端傳播的過程中發(fā)生衰減和變形,該衰減和變形的第一個(gè)波頭中就包含著豐富的信息,利用數(shù)學(xué)模型提取該波頭上的故障特征,從而取得故障測距結(jié)果。但是,很難得到該首波頭中各個(gè)頻率分量對應(yīng)的幅值。將某指定分量對應(yīng)的頻率設(shè)置為中心頻率,作大尺度下的小波變換,然后得到其模極大值,利用兩端此頻率分量的模極大值的比值表征雙端對應(yīng)的頻率分量幅值之比。雖然線路兩端指定頻率分量的模極大值的比值和其幅值之比是一一對應(yīng)的關(guān)系,但畢竟不是相等關(guān)系,所以本文選取RBF網(wǎng)絡(luò)來刻畫這種對應(yīng)關(guān)系。最后通過PSCAD算例模型對所提算法進(jìn)行仿真及驗(yàn)證,此方法具有很高的可行性,采樣時(shí)間窗比較窄,并且不用考慮初始波頭的后續(xù)波的影響。(3)影響測距結(jié)果各因素敏感性分析通過對故障發(fā)生時(shí)故障類型、過渡電阻和初相角等影響故障點(diǎn)初始行波產(chǎn)生問題的主要因素及采樣率和訓(xùn)練樣本對測距結(jié)果的分析,以PSCAD/EMTDC搭建仿真模型分析出在上述各因素影響下,本文測距方法能可靠的得出準(zhǔn)確的測距結(jié)果,但是本文只對交流架空線路進(jìn)行研究,未涉及配網(wǎng)及特高壓線路的研究,所以還需拓寬涉及面以研究其可行性。(4)分接線對其結(jié)果的影響及改進(jìn)方法研究詳細(xì)分析了分接線對本文所提測距算法的產(chǎn)生的影響并就此提出實(shí)際的解決方法。得到了下述結(jié)論:第一、本文假定分接線與輸電線路MN同參,行波首波頭沿MN傳播到波阻抗不連續(xù)的分接點(diǎn)時(shí)發(fā)生折、反射,使其幅值變小,但是形狀未變。這樣線路兩端的幅值就不再對應(yīng),需要對經(jīng)過分接點(diǎn)衰減的一側(cè)的幅值進(jìn)行修正。此方法實(shí)施的前提是必須明確故障發(fā)生在具體哪個(gè)區(qū)段。第二、波頭的衰減和變形與其頻率相關(guān),故而輸電線路上不同位置發(fā)生故障時(shí)到達(dá)線路兩端測量點(diǎn)的波頭具有不同的形狀,這樣就刻畫了波頭形狀與故障位置的一一對應(yīng)關(guān)系。采用數(shù)學(xué)定義——突變波形系數(shù)來描述此關(guān)系,它刻畫的是波頭衰減和變形的形狀,與大小無關(guān),即不用再刻意去對初始波頭幅值進(jìn)行校正。最后利用仿真校驗(yàn)了此方法的可靠性。
[Abstract]:The capacity of the power system and power grid expanding area of rapid expansion, the management and operation of the power grid control becomes more complex, the problem of security and stability are increasingly prominent. The power system failure caused by the destruction of the consequences of power failure is often associated with treatment and recovery rate. If the fault can not get timely treatment, harm the result may be very serious. Fast fault occurs, precise fault location, fault isolation can minimum range of components, to achieve the maximum range of the normal power supply. Therefore, the speed and the accuracy of the fault location of power system are important economic force, stability and safety. This paper focuses on the fault location of transmission to the attenuation and distortion of the line by the head of traveling wave information the idea of the study, in order to achieve accurate fault location for the purpose, and study the various unfavorable factors under the influence of Stable and reliable work. The specific content of the work done in this paper are as follows: (1) the basic principle of the traveling wave analysis and its characteristic research by MATLAB on the actual transmission line system simulation analysis, line frequency parameters, by decoupling analysis, finally get the changing trend of modulus parameters. Zero mode resistance, inductance effect the larger of the zero mode traveling wave, when the frequency increases, the resistance value is zero mode becomes larger, and the inductance value is negative but smaller; line mode inductance hardly changes, the resistance value is positively related to die slowly. The wave speed to zero mode component and attenuation constant frequency effect of greater than the line mode, namely zero mode component in the process of propagation velocity decay more slowly, and the deformation degree is greater. (2) transmission line double terminal traveling wave fault location method of zero mode traveling wave fault components at the fault point for the step signal, however Along the transmission line to line ends in the spread of decay and deformation, the attenuation and distortion of the first wave head contains abundant information, extract the wave head of the fault feature by using mathematics model to obtain the fault location results. However, it is difficult to get the amplitude of the first wave head in each frequency a component corresponding to the specified component. The corresponding frequency is set to the center frequency of wavelet transform in large scale, and then get the modulus maxima using two the frequency components of the modulus maximum frequency component amplitude ratio of double end corresponding ratio. Although the relationship between the ratio of the specified frequency component at both ends of the line at the maximum the value and the amplitude ratio is one-to-one, but not equal, so this paper selects RBF network to describe this relationship. Finally through the example of PSCAD model is used to simulate the proposed algorithm And verification, this method has high feasibility, sampling time window is relatively narrow, and do not consider the initial wave head of subsequent wave effects. (3) effects of ranging results of the factors through the sensitivity analysis of fault fault types, analysis of the main factors affecting the initial phase of the transition resistance and fault point of initial traveling wave problems and the sampling rate and the training samples on the measurement results, analysis of the impact of these factors on PSCAD/EMTDC in the simulation model, the ranging method can obtain accurate and reliable measurement results, but this paper only on the AC overhead line of research does not involve the distribution network and the UHV transmission line, so it is necessary to broaden the covers in order to study its feasibility. (4) research and improvement effect on the results of a detailed analysis of the connection points of the connection location algorithm and puts forward the actual impact Solution. Get the following conclusion: first, this paper assumes that the branch connection and transmission line MN with ginseng, fold, the first wave traveling wave occurred along the MN spread to wave impedance discontinuity points point reflection, the amplitude becomes smaller, but the shape unchanged. This amplitude at both ends of the transmission line will no longer need to correspond after one side of the contact amplitude attenuation correction. This method is the premise of implementation must be clear fault occur in any specific section. Second, the head wave attenuation and distortion and frequency, and transmission line fault occurs at different positions on the wave head line at both ends of the road with different shapes, such as characterization the head wave shape and fault location. The correspondence between mathematical definition - waveform coefficients to describe the mutation of this relationship, it is a portrait of the shape of head wave attenuation and distortion, and size, not to deliberately The amplitude of the initial wave head is corrected. Finally, the reliability of the method is verified by simulation.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM75
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 柳樹平,劉景勤,沈立宏;現(xiàn)代行波測距技術(shù)及系統(tǒng)在綏化電網(wǎng)中的應(yīng)用[J];黑龍江電力;2003年04期
2 楊永強(qiáng);束洪春;李旭前;;電力系統(tǒng)行波測距綜述[J];云南電力技術(shù);2007年05期
3 陳厚斯;呂飛鵬;韓傳鼎;;行波測距在500kV變電站的應(yīng)用及其存在問題研究[J];四川電力技術(shù);2008年02期
4 劉書君;;500KV輸電線路行波測距的分析[J];黑龍江科技信息;2009年29期
5 謝民;;220kV電網(wǎng)行波測距系統(tǒng)組網(wǎng)運(yùn)行實(shí)踐探討[J];電力自動(dòng)化設(shè)備;2010年05期
6 徐亮;宋巍;;500kV輸電線路行波測距單端波形研究及應(yīng)用[J];華北電力技術(shù);2010年08期
7 李揚(yáng);黃映;成樂祥;;考慮故障時(shí)刻與波速選取相配合的行波測距[J];電力自動(dòng)化設(shè)備;2010年11期
8 高巖;李青;;行波測距在保定電網(wǎng)中的應(yīng)用[J];大眾用電;2011年01期
9 孟榮;張志昊;褚罡;;線路行波測距在500kV變電站的應(yīng)用分析及改進(jìn)措施[J];華北電力技術(shù);2012年03期
10 馬臨;汪志成;;行波測距用數(shù)據(jù)采集系統(tǒng)的設(shè)計(jì)[J];科技廣場;2012年09期
相關(guān)會(huì)議論文 前9條
1 司大軍;;行波測距應(yīng)用實(shí)例分析[A];2010年云南電力技術(shù)論壇論文集(優(yōu)秀論文部分)[C];2010年
2 張凌;;輸電線路單雙端行波測距實(shí)例研討[A];2011年云南電力技術(shù)論壇論文集(優(yōu)秀論文部分)[C];2011年
3 張凌;;輸電線路單雙端行波測距實(shí)例研討[A];2011年云南電力技術(shù)論壇論文集(入選部分)[C];2011年
4 高翔;海濤;徐嫣;;基于小波變換的電力線路故障行波測距[A];2004年廣西自動(dòng)化學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2004年
5 于德芳;張賀;;基于小波變換的行波測距在電網(wǎng)故障選線中的應(yīng)用[A];煤礦機(jī)電一體化新技術(shù)2011學(xué)術(shù)年會(huì)論文集[C];2011年
6 季濤;孫同景;熊立新;;電力線路故障行波測距技術(shù)及應(yīng)用[A];第16屆中國過程控制學(xué)術(shù)年會(huì)暨第4屆全國故障診斷與安全性學(xué)術(shù)會(huì)議論文集[C];2005年
7 徐善琛;張建文;王剛;童偉;;基于波速度歸一方法的電纜架空線路雙端行波測距研究[A];第十八屆全國煤礦自動(dòng)化學(xué)術(shù)年會(huì)中國煤炭學(xué)會(huì)自動(dòng)化專業(yè)委員會(huì)學(xué)術(shù)會(huì)議論文集[C];2008年
8 榮鋼;石恒初;;基于電力調(diào)度數(shù)據(jù)網(wǎng)的行波測距系統(tǒng)探討[A];2011年云南電力技術(shù)論壇論文集(入選部分)[C];2011年
9 白春濤;;基于小波分析的電力電纜故障行波測距研究[A];2008中國電力系統(tǒng)保護(hù)與控制學(xué)術(shù)研討會(huì)論文集[C];2008年
相關(guān)碩士學(xué)位論文 前10條
1 楊榮華;新型輸電線路行波故障測距裝置研究[D];山東大學(xué);2015年
2 魏萌;行波測距裝置測距性能測試分析及新型雙端法研究[D];昆明理工大學(xué);2016年
3 羅維;輸電線路中行波測距系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2016年
4 任帥;故障錄波與單端行波測距一體化研究[D];華北電力大學(xué);2016年
5 童安蓉;中壓配電網(wǎng)短路故障定位技術(shù)研究[D];蘭州交通大學(xué);2016年
6 張青瑞;電子互感器對行波測距精度影響的對比分析研究[D];昆明理工大學(xué);2016年
7 李聰聰;交流輸電線路雙端行波測距方法研究[D];山東大學(xué);2017年
8 常春光;面向?qū)ο蟮男胁y距單元設(shè)計(jì)[D];山東大學(xué);2010年
9 李曉波;現(xiàn)代行波測距技術(shù)研究及應(yīng)用[D];哈爾濱理工大學(xué);2007年
10 高振華;廣域行波測距系統(tǒng)的研究[D];山東大學(xué);2011年
,本文編號(hào):1453436
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/1453436.html