水下運(yùn)載器小范圍高精度組合導(dǎo)航系統(tǒng)研究
本文選題:水下運(yùn)載器 切入點(diǎn):自主作業(yè) 出處:《浙江大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:目前水下作業(yè)任務(wù)一般采用載人運(yùn)載器(HOV)和遙控水下運(yùn)載器(ROV)完成。但HOV需要有復(fù)雜的生命保障系統(tǒng),極大地提高了作業(yè)成本。而ROV在繞柱作業(yè)時(shí),極易發(fā)生臍帶纜纏繞事故;且在長(zhǎng)距離沿纜作業(yè)時(shí),需要母船跟隨移動(dòng)且具有一定的動(dòng)力定位能力,也極大地提高了作業(yè)成本。因此水下運(yùn)載器自主作業(yè)慢慢成為解決以上難題的研究熱點(diǎn)。本課題針對(duì)自主作業(yè)中的導(dǎo)航技術(shù)進(jìn)行研究,利用低成本的MEMS慣性測(cè)量單元、電子羅盤和模擬視覺(jué)傳感器構(gòu)成組合導(dǎo)航系統(tǒng),采用異步失序修正型卡爾曼濾波,解決了多傳感器的異步失序問(wèn)題,成功研制出一個(gè)適用于自主作業(yè)時(shí)的高精度高頻率的水下運(yùn)載器組合導(dǎo)航系統(tǒng)。全文共分為六章:第一章,主要介紹了本課題的研究背景、水下運(yùn)載器以及水下導(dǎo)航技術(shù)的研究現(xiàn)狀。根據(jù)單一的水下導(dǎo)航技術(shù)的優(yōu)缺點(diǎn)分析,提出本課題的研究意義與研究的主要內(nèi)容。第二章,基于水下運(yùn)載器自主作業(yè)的需求提出了組合導(dǎo)航系統(tǒng)方案,闡述了組合導(dǎo)航系統(tǒng)的工作原理和構(gòu)成。并分別進(jìn)行了捷聯(lián)慣性導(dǎo)航系統(tǒng)的狀態(tài)信息解算、融合中心設(shè)計(jì)以及傳感器選型。第三章,針對(duì)水下運(yùn)載器小范圍高精度組合導(dǎo)航系統(tǒng)的融合問(wèn)題,進(jìn)行了融合模型的設(shè)計(jì)以及系統(tǒng)建模。并分別開展了基于實(shí)時(shí)信息和基于異步失序信息的融合算法研究,解決了多傳感器的異步失序問(wèn)題。第四章,針對(duì)水下視覺(jué)傳感器開發(fā)周期長(zhǎng)、成本高的問(wèn)題,提出使用Passive Manipulator (PM)六自由度位置測(cè)量系統(tǒng)模擬水下視覺(jué)傳感器。詳細(xì)介紹了PM的設(shè)計(jì)過(guò)程以及位置信息解算過(guò)程。并通過(guò)試驗(yàn),驗(yàn)證了所設(shè)計(jì)的PM系統(tǒng),可以用于模擬常用的水下視覺(jué)傳感器。第五章,進(jìn)行了水下運(yùn)載器小范圍高精度組合導(dǎo)航系統(tǒng)實(shí)驗(yàn)研究,詳細(xì)介紹了實(shí)驗(yàn)系統(tǒng)的搭建、電路部分設(shè)計(jì)以及控制程序設(shè)計(jì)。分別進(jìn)行了靜態(tài)姿態(tài)和位置組合導(dǎo)航實(shí)驗(yàn)以及動(dòng)態(tài)位置組合導(dǎo)航實(shí)驗(yàn),驗(yàn)證了本課題所設(shè)計(jì)的組合導(dǎo)航系統(tǒng)的綜合性能的優(yōu)越性。第六章,對(duì)研究課題的主要研究工作進(jìn)行了總結(jié),指出了課題的創(chuàng)新點(diǎn)。并針對(duì)課題的不足之處提出了進(jìn)一步研究與提高的方向。
[Abstract]:At present, the underwater task is usually accomplished by the manned launch vehicle (Hov) and the remote-controlled underwater carrier (ROV). However, HOV requires a complex life support system, which greatly increases the operating cost. However, the ROV is prone to the cord winding accident when it is working around the column. And in the long distance along the cable operation, it is necessary for the mother ship to follow and move and have a certain dynamic positioning ability. Therefore, autonomous operation of underwater launch vehicle has gradually become a hot research topic to solve the above problems. This subject aims at the navigation technology in autonomous operation and makes use of the low-cost MEMS inertial measurement unit. The integrated navigation system is composed of electronic compass and analog vision sensor. The asynchronous out-of-order modified Kalman filter is used to solve the asynchronous disorder problem of multi-sensor. A high precision and high frequency integrated navigation system for underwater launch vehicle is successfully developed. The whole paper is divided into six chapters: chapter 1, the research background of this subject is introduced. The research status of underwater vehicle and underwater navigation technology. According to the advantages and disadvantages of a single underwater navigation technology, the research significance and main contents of this subject are put forward. Based on the requirement of autonomous operation of underwater launch vehicle, a scheme of integrated navigation system is put forward, the working principle and structure of integrated navigation system are expounded, and the state information of strapdown inertial navigation system is calculated respectively. Design of Fusion Center and selection of sensors. In Chapter 3, the fusion problem of small range and high precision integrated navigation system for underwater launch vehicle is discussed. The fusion model and system modeling are designed, and the fusion algorithms based on real-time information and asynchronous information are studied, which solves the asynchronous disorder problem of multi-sensor. Chapter 4th, Aiming at the problem of long development period and high cost of underwater vision sensor, a 6-DOF position measurement system with Passive Manipulator is proposed to simulate underwater vision sensor. The design process of PM and the calculation process of position information are introduced in detail. The design of PM system is verified, which can be used to simulate the commonly used underwater vision sensors. Chapter 5th, the experimental research on the small range and high precision integrated navigation system of underwater launch vehicle is carried out, and the construction of the experimental system is introduced in detail. Circuit design and control program design. Static attitude and position integrated navigation experiment and dynamic position integrated navigation experiment are carried out, which verify the superiority of the integrated navigation system designed in this paper. Chapter 6th, This paper summarizes the main research work of the research topic, points out the innovation points of the subject, and puts forward the direction of further research and improvement in view of the deficiency of the subject.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:U674.941;U666.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王帥;劉濤;張文忠;;水下運(yùn)載器調(diào)節(jié)索抗流功能的數(shù)值計(jì)算與分析[J];船舶力學(xué);2012年07期
2 崔乃剛;白瑜亮;常亞武;王小剛;許江濤;;基于非線性動(dòng)態(tài)逆的水下運(yùn)載器控制方法研究[J];兵工學(xué)報(bào);2013年04期
3 白瑜亮;崔乃剛;呂世良;;水下運(yùn)載器縱向軌跡自適應(yīng)跟蹤控制[J];光學(xué)精密工程;2013年07期
4 連璉,顧云冠;海況對(duì)水下運(yùn)載器吊放回收的影響[J];海洋工程;1996年01期
5 Cheng Chin;Michael Lau;;復(fù)雜形體遠(yuǎn)程操控水下運(yùn)載器水動(dòng)力阻尼模型建模和檢驗(yàn)(英文)[J];Journal of Marine Science and Application;2012年02期
6 劉文;;水下運(yùn)載器控制器設(shè)計(jì)[J];機(jī)電技術(shù);2010年01期
7 連侖;吳忠;;基于控制力矩陀螺的水下運(yùn)載器動(dòng)力學(xué)與仿真[J];北京航空航天大學(xué)學(xué)報(bào);2010年09期
8 徐鋒;鄒早建;宋鑫;;基于支持向量機(jī)的水下運(yùn)載器平面操縱運(yùn)動(dòng)建模[J];上海交通大學(xué)學(xué)報(bào);2012年03期
9 白瑜亮;崔乃剛;郭繼峰;許江濤;;基于隱式增量動(dòng)態(tài)逆的水下運(yùn)載器出水姿態(tài)控制[J];兵工學(xué)報(bào);2013年07期
10 郭福濤;;潛射“飛魚”SM39近況綜述[J];飛航導(dǎo)彈;1987年01期
相關(guān)重要報(bào)紙文章 前1條
1 陳宇;Gavia:俄打造新一代“水下殺手”[N];中國(guó)國(guó)防報(bào);2011年
相關(guān)碩士學(xué)位論文 前10條
1 牛峻峰;基于小波的某水下運(yùn)載器振動(dòng)信號(hào)的分析研究[D];中北大學(xué);2009年
2 李曉東;水下運(yùn)載器小范圍高精度組合導(dǎo)航系統(tǒng)研究[D];浙江大學(xué);2016年
3 佟曉霞;某水下運(yùn)載器機(jī)械振動(dòng)信號(hào)的分析方法研究[D];中北大學(xué);2009年
4 張浩;水下運(yùn)載器參數(shù)辨識(shí)與控制方法研究[D];西北工業(yè)大學(xué);2006年
5 王帥;水下運(yùn)載器總體優(yōu)化與自平衡控制技術(shù)研究[D];中國(guó)艦船研究院;2012年
6 伍小明;水下運(yùn)載器運(yùn)動(dòng)跟蹤控制[D];福州大學(xué);2010年
7 張偉;一種小型水下運(yùn)載器控制技術(shù)研究[D];中國(guó)艦船研究院;2014年
8 胡海龍;無(wú)動(dòng)力水下運(yùn)載器的動(dòng)力學(xué)建模與仿真分析[D];哈爾濱工業(yè)大學(xué);2010年
9 張蕊;水下運(yùn)載器慣性測(cè)量數(shù)據(jù)解算及誤差分析[D];西北工業(yè)大學(xué);2005年
10 黎娜;水下運(yùn)載器慣性測(cè)量事后狀態(tài)估計(jì)方法研究[D];西北工業(yè)大學(xué);2006年
,本文編號(hào):1594717
本文鏈接:http://sikaile.net/kejilunwen/chuanbolw/1594717.html