SiC p (Ti 3 AlC 2p )/Al 2 O 3 -GdAlO 3 復(fù)合材料組織結(jié)構(gòu)調(diào)控及高溫自愈合行為
發(fā)布時間:2021-08-17 05:00
Al2O3基共晶復(fù)合材料是一種極具潛力的工程陶瓷,廣泛應(yīng)用于航空航天先進(jìn)渦輪發(fā)動機(jī)和燃?xì)廨啓C(jī)的高溫結(jié)構(gòu)部件。通過開發(fā)新型低成本陶瓷制備技術(shù)與改性方法可以改善其微觀組織結(jié)構(gòu),從而拓展新型Al2O3基共晶陶瓷體系,并提高其熱機(jī)械性能。本文采用化學(xué)共沉淀方法,通過調(diào)整反應(yīng)參數(shù)和煅燒溫度可以低成本高效合成共晶成分Al2O3-GdAlO3和Al2O3-ZrO2-GdAlO3納米粉體,研究了煅燒溫度對化學(xué)共沉淀法所制備納米共晶Al2O3-GdAlO3和Al2O3-ZrO2-GdAlO3粉體的形貌和結(jié)構(gòu)的影響。α-Al2O3、GdAlO3和t-Z...
【文章來源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校
【文章頁數(shù)】:214 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
Abstract
Chapter1 Introduction
1.1 Background and general introduction
1.2 Eutectic ceramic oxides overview
1.2.1 Properties of Al_2O_3 and GdAlO_3 single crystals
1.2.2 Fabrication methods of eutectic ceramic oxides
1.2.3 Microstructural characteristics
1.3 Structure of Ti_3AlC_2 and SiC
1.3.1 Al_2O_3-GdAlO_3 eutectic ceramic
1.3.2 Structure of silicon carbide(SiC)
1.3.3 Structure of Ti_3AlC_2
1.4 Self-healing overview
1.4.1 Research progress of crack self-healing
1.4.2 Mechanisms of self-healing in ceramic materials
1.4.3 Matrix for self-healing material
1.4.4 Factors influencing self-healing of cracks
1.5 Oxidation behavior of Ti_3AlC_2
1.6 Objectives,significance and main contents
Chapter2 Experimental materials and methods
2.1 Introduction
2.2 Raw materials
2.3 Thermodynamic calculations
2.4 Fabrication methods
2.4.1 Powder preparation method
2.4.2 Sintering process
2.4.3 Melting process
2.5 Methods for compositional analysis and microstructural characterization
2.5.1 Relative density analysis
2.5.2 X-ray diffraction(XRD)analysis
2.5.3 Scanning electron microscope(SEM)analysis
2.5.4 Transmission electron microscope(TEM) analysis
2.6 Mechanical properties measurements
2.6.1 Room temperature flexural strength tests
2.6.2 High temperature flexural strength tests
2.6.3 Vickers hardness
2.6.4 Fracture toughness tests
2.7 Thermo-physical properties measurements
2.7.1 Thermal conductivity measurement
2.7.2 Thermal expansion property measurements
2.8 Oxidation behavior of SiC_p(Ti_3AlC_(2p))/Al_2O_3-GdAlO_3 composites
2.9 Self-healing capability in SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
Chapter3 Microstructure and mechanical properties of Al_2O_3-GdAlO_3 based ceramics
3.1 Introduction
3.2 Powder characterization
3.2.1 Characterization of Al_2O_3-GdAlO_3 ceramic powders
3.2.2 Characterization of Al_2O_3-GdAlO_3-ZrO2 ceramic powders
3.3 Relative density,phase composition and microstructural characterization of Al_2O_3-GdAlO_3 based ceramics
3.3.1 Relative density of Al_2O_3-GdAlO_3 composites
3.3.2 Relative density of Al_2O_3-GdAlO_3-ZrO2 composites
3.3.3 Microstructure of Al_2O_3-GdAlO_3 based ceramics
3.3.4 Microstructure of Al_2O_3-GdAlO_3-ZrO2 composites
3.4 Mechanical properties of Al_2O_3-GdAlO_3 based ceramics
3.4.1 Mechanical properties of Al_2O_3-GdAlO_3 composites
3.4.2 Mechanical properties of Al_2O_3-GdAlO_3-ZrO2 composites
3.5 Thermo-physical properties of Al_2O_3- GdAlO_3 based ceramics
3.5.1 Thermo-physical properties of Al_2O_3-GdAlO_3 composites
3.5.2 Thermo-physical properties of Al_2O_3-ZrO2-GdAlO_3 composites
3.6 Melting process and microstructure evolution of Al_2O_3-GdAlO_3 ceramic
3.6.1 One-step melting process
3.6.2 Two-step melting process
3.6.3 Transition from irregular to regular microstructure
3.6.4 TEM analysis of melted Al_2O_3-GdAlO_3 eutectic
3.6.5 Micrustructural stability
3.7 Summary
Chapter4 Microstructure and mechanical properties of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
4.1 Introduction
4.2 Thermodynamic considerations in composites design
4.2.1 Possible reactions in the case of thermal decomposition of Ti_3AlC_2 MAX phase and different composites
4.2.2 The Gibbs free energy changes
4.3 Densification and phase constituent of SiC p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
4.3.1 Densification and phase constituent Al_2O_3-GdAlO_3-SiC composites
4.3.2 Densification and phase constituent of Al_2O_3-GdAlO_3-Ti_3AlC_2
4.4 Microstructural characterization of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
4.4.1 Microstructural characterization of Al_2O_3-GdAlO_3-SiC
4.4.2 Microstructural characterization of Al_2O_3-GdAlO_3-Ti_3AlC_2
4.5 Mechanical properties of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
4.5.1 Mechanical properties of Al_2O_3-GdAlO_3-SiC
4.5.2 Mechanical properties of Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
4.6 Summary
Chapter5 Oxidation and self-healing behaivor of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
5.1 Introduction
5.2 Thermodynamic considerations of oxidation in Al_2O_3-GdAlO_3 based composites
5.2.1 Oxidation in Al_2O_3-GdAlO_3-SiC composites
5.2.2 Oxidation in Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.3 Volume expansion upon oxidation
5.4 Oxidation kinetics of Al_2O_3-GdAlO_3 based composites
5.4.1 Oxidation kinetics of Al_2O_3-GdAlO_3-SiC composites
5.4.2 Oxidation kinetics of Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.5 Phase constituents of oxidized surfaces on Al_2O_3-GdAlO_3 based composites
5.5.1 Phase constituents of oxidized surfaces on Al_2O_3-GdAlO_3-SiC composites
5.5.2 Phase constituents of oxidized surfaces on Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.6 Surface and Cross-section morphology of Al_2O_3-GdAlO_3 based composites
5.6.1 Surface morphologies of oxidized Al_2O_3-GdAlO_3-SiC composites
5.6.2 Surface morphologies of oxidized Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.6.3 Cross-section morphologies of oxidized Al_2O_3-GdAlO_3-SiC composites
5.6.4 Cross-section morphologies of oxidized Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.7 Effect of oxidation on flexural strength of Al_2O_3–GdAlO_3 based composites
5.7.1 Flexural strength of oxidized Al_2O_3-GdAlO_3-SiC composites
5.7.2 Flexural strength of oxidized Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.8 Self-healing behavior of Al_2O_3–GdAlO_3 based composites
5.8.1 Crack self-healing ability of SiC and Ti_3AlC_2 particles
5.8.2 Crack morphology after self-healing of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
5.8.3 Effect of annealing temperature and time on the self-healing characteristic of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO
5.8.4 Self-healing mechanism in SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
5.9 Summary
Conclusions
References
List of Publications
Acknowledgements
Resume
【參考文獻(xiàn)】:
期刊論文
[1]Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics:a Review[J]. X.H.Wang and Y.C.Zhou Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China. Journal of Materials Science & Technology. 2010(05)
[2]增韌Al2O3結(jié)構(gòu)陶瓷氧化反應(yīng)裂紋愈合動力學(xué)研究——(Ⅰ)理論模型[J]. 呂珺,鄭治祥,吳玉程,金志浩. 無機(jī)材料學(xué)報. 2006(01)
本文編號:3347107
【文章來源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校
【文章頁數(shù)】:214 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
Abstract
Chapter1 Introduction
1.1 Background and general introduction
1.2 Eutectic ceramic oxides overview
1.2.1 Properties of Al_2O_3 and GdAlO_3 single crystals
1.2.2 Fabrication methods of eutectic ceramic oxides
1.2.3 Microstructural characteristics
1.3 Structure of Ti_3AlC_2 and SiC
1.3.1 Al_2O_3-GdAlO_3 eutectic ceramic
1.3.2 Structure of silicon carbide(SiC)
1.3.3 Structure of Ti_3AlC_2
1.4 Self-healing overview
1.4.1 Research progress of crack self-healing
1.4.2 Mechanisms of self-healing in ceramic materials
1.4.3 Matrix for self-healing material
1.4.4 Factors influencing self-healing of cracks
1.5 Oxidation behavior of Ti_3AlC_2
1.6 Objectives,significance and main contents
Chapter2 Experimental materials and methods
2.1 Introduction
2.2 Raw materials
2.3 Thermodynamic calculations
2.4 Fabrication methods
2.4.1 Powder preparation method
2.4.2 Sintering process
2.4.3 Melting process
2.5 Methods for compositional analysis and microstructural characterization
2.5.1 Relative density analysis
2.5.2 X-ray diffraction(XRD)analysis
2.5.3 Scanning electron microscope(SEM)analysis
2.5.4 Transmission electron microscope(TEM) analysis
2.6 Mechanical properties measurements
2.6.1 Room temperature flexural strength tests
2.6.2 High temperature flexural strength tests
2.6.3 Vickers hardness
2.6.4 Fracture toughness tests
2.7 Thermo-physical properties measurements
2.7.1 Thermal conductivity measurement
2.7.2 Thermal expansion property measurements
2.8 Oxidation behavior of SiC_p(Ti_3AlC_(2p))/Al_2O_3-GdAlO_3 composites
2.9 Self-healing capability in SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
Chapter3 Microstructure and mechanical properties of Al_2O_3-GdAlO_3 based ceramics
3.1 Introduction
3.2 Powder characterization
3.2.1 Characterization of Al_2O_3-GdAlO_3 ceramic powders
3.2.2 Characterization of Al_2O_3-GdAlO_3-ZrO2 ceramic powders
3.3 Relative density,phase composition and microstructural characterization of Al_2O_3-GdAlO_3 based ceramics
3.3.1 Relative density of Al_2O_3-GdAlO_3 composites
3.3.2 Relative density of Al_2O_3-GdAlO_3-ZrO2 composites
3.3.3 Microstructure of Al_2O_3-GdAlO_3 based ceramics
3.3.4 Microstructure of Al_2O_3-GdAlO_3-ZrO2 composites
3.4 Mechanical properties of Al_2O_3-GdAlO_3 based ceramics
3.4.1 Mechanical properties of Al_2O_3-GdAlO_3 composites
3.4.2 Mechanical properties of Al_2O_3-GdAlO_3-ZrO2 composites
3.5 Thermo-physical properties of Al_2O_3- GdAlO_3 based ceramics
3.5.1 Thermo-physical properties of Al_2O_3-GdAlO_3 composites
3.5.2 Thermo-physical properties of Al_2O_3-ZrO2-GdAlO_3 composites
3.6 Melting process and microstructure evolution of Al_2O_3-GdAlO_3 ceramic
3.6.1 One-step melting process
3.6.2 Two-step melting process
3.6.3 Transition from irregular to regular microstructure
3.6.4 TEM analysis of melted Al_2O_3-GdAlO_3 eutectic
3.6.5 Micrustructural stability
3.7 Summary
Chapter4 Microstructure and mechanical properties of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
4.1 Introduction
4.2 Thermodynamic considerations in composites design
4.2.1 Possible reactions in the case of thermal decomposition of Ti_3AlC_2 MAX phase and different composites
4.2.2 The Gibbs free energy changes
4.3 Densification and phase constituent of SiC p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
4.3.1 Densification and phase constituent Al_2O_3-GdAlO_3-SiC composites
4.3.2 Densification and phase constituent of Al_2O_3-GdAlO_3-Ti_3AlC_2
4.4 Microstructural characterization of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
4.4.1 Microstructural characterization of Al_2O_3-GdAlO_3-SiC
4.4.2 Microstructural characterization of Al_2O_3-GdAlO_3-Ti_3AlC_2
4.5 Mechanical properties of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
4.5.1 Mechanical properties of Al_2O_3-GdAlO_3-SiC
4.5.2 Mechanical properties of Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
4.6 Summary
Chapter5 Oxidation and self-healing behaivor of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
5.1 Introduction
5.2 Thermodynamic considerations of oxidation in Al_2O_3-GdAlO_3 based composites
5.2.1 Oxidation in Al_2O_3-GdAlO_3-SiC composites
5.2.2 Oxidation in Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.3 Volume expansion upon oxidation
5.4 Oxidation kinetics of Al_2O_3-GdAlO_3 based composites
5.4.1 Oxidation kinetics of Al_2O_3-GdAlO_3-SiC composites
5.4.2 Oxidation kinetics of Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.5 Phase constituents of oxidized surfaces on Al_2O_3-GdAlO_3 based composites
5.5.1 Phase constituents of oxidized surfaces on Al_2O_3-GdAlO_3-SiC composites
5.5.2 Phase constituents of oxidized surfaces on Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.6 Surface and Cross-section morphology of Al_2O_3-GdAlO_3 based composites
5.6.1 Surface morphologies of oxidized Al_2O_3-GdAlO_3-SiC composites
5.6.2 Surface morphologies of oxidized Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.6.3 Cross-section morphologies of oxidized Al_2O_3-GdAlO_3-SiC composites
5.6.4 Cross-section morphologies of oxidized Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.7 Effect of oxidation on flexural strength of Al_2O_3–GdAlO_3 based composites
5.7.1 Flexural strength of oxidized Al_2O_3-GdAlO_3-SiC composites
5.7.2 Flexural strength of oxidized Al_2O_3-GdAlO_3-Ti_3AlC_2 composites
5.8 Self-healing behavior of Al_2O_3–GdAlO_3 based composites
5.8.1 Crack self-healing ability of SiC and Ti_3AlC_2 particles
5.8.2 Crack morphology after self-healing of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
5.8.3 Effect of annealing temperature and time on the self-healing characteristic of SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO
5.8.4 Self-healing mechanism in SiC_p(Ti_3AlC_2p)/Al_2O_3-GdAlO_3 composites
5.9 Summary
Conclusions
References
List of Publications
Acknowledgements
Resume
【參考文獻(xiàn)】:
期刊論文
[1]Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics:a Review[J]. X.H.Wang and Y.C.Zhou Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China. Journal of Materials Science & Technology. 2010(05)
[2]增韌Al2O3結(jié)構(gòu)陶瓷氧化反應(yīng)裂紋愈合動力學(xué)研究——(Ⅰ)理論模型[J]. 呂珺,鄭治祥,吳玉程,金志浩. 無機(jī)材料學(xué)報. 2006(01)
本文編號:3347107
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/3347107.html
最近更新
教材專著