小型化超材料電磁結(jié)構(gòu)設(shè)計及應用
發(fā)布時間:2021-01-18 15:59
超材料(MM)是一種人工材料,在工程上用于改變電磁波在結(jié)構(gòu)上的入射特性。這類材料已經(jīng)應用在從低頻到高頻(微波波段到光學波段)的廣泛應用中,并且展現(xiàn)出了巨大的潛力。超表面(MS)是一類獨特的平面超材料,在結(jié)構(gòu)上具有光學意義的薄而致密的二維單元陣列。由于其亞波長的結(jié)構(gòu)尺寸,超表面可以用于設(shè)計緊湊型設(shè)備和電路,例如濾波器、天線、耦合器等。由于便攜式設(shè)備,如筆記本電腦、平板電腦、移動電話等,要求降低重量和減小體積以提高便攜性。因此,小型化和緊湊化是高端手持設(shè)備的基本要求。此外,實現(xiàn)寬頻帶、高增益、低傳輸線損耗和信號完整性是先進設(shè)備和系統(tǒng)面臨的關(guān)鍵挑戰(zhàn);谏鲜霰尘,本研究探討微波頻率下的超材料激發(fā)結(jié)構(gòu)在微波頻段的濾波應用。由于優(yōu)質(zhì)材料的采用、制造工藝的日新月異和先進的計算機輔助設(shè)計(CAD)工具的發(fā)展,高效濾波器的設(shè)計和實現(xiàn)在當今已不再是難題。此外,更新穎且更高效的濾波器的實現(xiàn)更是獲益良多。考慮到其廣泛的應用,本文首先研究涉空間濾波器,即電磁學領(lǐng)域廣泛研究的頻率選擇表面(FSS)。這是一種在介質(zhì)基板上設(shè)計出平面金屬陣列單元(貼片或孔徑)的二維周期結(jié)構(gòu),在一定的諧振頻率下表現(xiàn)出透射和反射特性。龐...
【文章來源】:北京科技大學北京市 211工程院校 教育部直屬院校
【文章頁數(shù)】:157 頁
【學位級別】:博士
【文章目錄】:
摘要
Abstract
List of Abbreviations
Chapter 1 Introduction
1.1 History Overview of Metamaterials
1.2 Metamaterials Definition and Background of Research
1.2.1 Double Positive Materials
1.2.2 Negative Epsilon Materials
1.2.3 Negative Mu Materials
1.2.4 Double Negative Materials
1.3 Metasurfaces
1.3.1 Types of MSs
1.4 Metasurfaces versus Bulk Metamaterials
1.5 Significance of Research
1.6 Motivation for Research
1.7 Problem Formulations and Statements
1.8 Objectives of Research
1.9 Methods for Analysis and Characterization of FSS and Spoof SPP
1.9.1 Numerical Simulations
1.9.2 Experimental Verification
1.9.3 Scattering Parameters
1.10 Organisation of thesis
Chapter 2 Literature Review
2.1 Introduction
2.2 Frequency Selective Surfaces
2.2.1 Periodic Structures
2.2.2 The functionality of FSSs
2.2.3 Principle of Periodic Structures
2.2.4 History and Significant Advances of FSS
2.2.5 Applications of FSS
2.2.6 Classification of FSSs
2.2.7 Basic Element Type FSSs
2.2.8 Convoluted or Meandered FSSs
2.2.9 Fractal based FSSs
2.2.10 Single layer FSSs
2.2.11 Multilayer FSSs
2.2.12 Antenna-Filter-Antenna FSSs
2.2.13 Selection of FSSs based on Classification and Performance
2.2.14 Future challenges and potential applications of FSSs
2.3 Plasmonics and Propagation of light in Metals
2.3.1 Spoof Surface Plasmon Polaritons
2.3.2 Planar Spoof SPP Structures
2.3.3 Importance of Spoof SPPs Studies
2.3.4 Problems in Transmission Through Spoof SPPs Devices
2.3.5 Spoof SPPs for High Speed Circuits
2.3.6 Theory of Surface Plasmon Polaritons-Dispersion Relation
2.3.7 Spoof SPPs Transmission Line Generic Structure
2.3.8 Earlier Research Review and Analysis
2.4 Conclusion of Chapter
Chapter 3 Broadband third-order AFA based FSS at high oblique AOI
3.1 Background
3.2 Performance characteristics of FSS
3.3 Fractals Geometry and AFA based Array Structures
3.4 Proposed Solution
3.5 Results and Design Analysis
3.6 Conclusion of Chapter
Chapter 4 Miniaturization of FSS based on Fractal Arrays with Square Slots for Enhanced Bandwidth
4.1 Background
4.2 Efficiency requirements of FSSs
4.3 Miniaturization versus BW in Earlier Schemes
4.4 Advanced Concept of AFA design
4.5 Proposed Design Structure and Principle
4.5.1 Proposed Design Structure
4.5.2 Principle and design process
4.6 Simulation Results and Analysis
4.6.1 Effect of Fractal Ratios on Frequency Response
4.6.2 Effect of Central Square Slot on Frequency Response
4.6.3 Effect of varing Incidence Angles on Frequency Response
4.6.4 Effect of Cross Polarization
4.7 Experimental verification and measurement results
4.8 Conclusion of Chapter
Chapter 5 Polarization Insensitive FSS at Ka-band
5.1 Background
5.2 Frequency regimes of X, Ku, K, and Ka-bands
5.3 Proposed FSS Structure and Analysis
5.3.1 Parametric Analysis
5.3.2 Optimized Filter
5.4 Conclusion of Chapter
Chapter 6 Role of Surface Geometric Patterns and Parameters in the Dispersion Relations ofSpoof SPPs at Microwave Frequency
6.1 Manipulation of EM waves through subwavelength Structures
6.1.1 Achieving Spoof SPPs in the Microwave regime
6.2 Dispersion Relations and Analysis
6.2.1 Field Confinement Analysis
6.3 Structure Design of Low-Pass Plasmonic Filter
6.4 Conclusion of Chapter
Chapter 7 Novel Spoof SPPs on Planar Metallic Strip with Periodic Semi-Elliptical Groovesat Microwave Frequency
7.1 Background and Significant Features of plasmonic structures
7.2 Researches on Corrugated plasmonic structures
7.3 Proposed MM Structure with the periodic semi-elliptical groove on the thin metalstrip
7.3.1 Proposed Structure Design and Comparison
7.3.2 Dispersion Graphs
7.3.3 Comparison of different dispersion relations
7.3.4 Effect of Structure Parameters on Dispersion Relations
7.4 High-Efficiency Low-Pass Plasmonic Filter Structure Design and Analysis
7.4.1 Dependence of the cutoff frequency on depth of the grooves
7.5 Experimental Verification
7.6 Conclusion of Chapter
Chapter 8 Conclusion of Research
8.1 Research Discussion and conclusion
8.2 Future Work
References
Acknowledgement
作者簡歷及在學研究成果
學位論文數(shù)據(jù)集
【參考文獻】:
期刊論文
[1]周期性亞波長金屬孔陣列的單元結(jié)構(gòu)對稱性對其增強光透射特性的影響[J]. 袁志,劉輝,陳志勇,朱衛(wèi)華,郭瑋,王新林. 光子學報. 2015(11)
[2]對稱雙屏Butterworth型頻率選擇表面的設(shè)計[J]. 徐念喜,馮曉國,梁鳳超,王巖松,高勁松. 光學精密工程. 2011(07)
[3]多頻段十字分形頻率選擇表面[J]. 王珊珊,高勁松,梁鳳超,王巖松,陳新. 物理學報. 2011(05)
本文編號:2985227
【文章來源】:北京科技大學北京市 211工程院校 教育部直屬院校
【文章頁數(shù)】:157 頁
【學位級別】:博士
【文章目錄】:
摘要
Abstract
List of Abbreviations
Chapter 1 Introduction
1.1 History Overview of Metamaterials
1.2 Metamaterials Definition and Background of Research
1.2.1 Double Positive Materials
1.2.2 Negative Epsilon Materials
1.2.3 Negative Mu Materials
1.2.4 Double Negative Materials
1.3 Metasurfaces
1.3.1 Types of MSs
1.4 Metasurfaces versus Bulk Metamaterials
1.5 Significance of Research
1.6 Motivation for Research
1.7 Problem Formulations and Statements
1.8 Objectives of Research
1.9 Methods for Analysis and Characterization of FSS and Spoof SPP
1.9.1 Numerical Simulations
1.9.2 Experimental Verification
1.9.3 Scattering Parameters
1.10 Organisation of thesis
Chapter 2 Literature Review
2.1 Introduction
2.2 Frequency Selective Surfaces
2.2.1 Periodic Structures
2.2.2 The functionality of FSSs
2.2.3 Principle of Periodic Structures
2.2.4 History and Significant Advances of FSS
2.2.5 Applications of FSS
2.2.6 Classification of FSSs
2.2.7 Basic Element Type FSSs
2.2.8 Convoluted or Meandered FSSs
2.2.9 Fractal based FSSs
2.2.10 Single layer FSSs
2.2.11 Multilayer FSSs
2.2.12 Antenna-Filter-Antenna FSSs
2.2.13 Selection of FSSs based on Classification and Performance
2.2.14 Future challenges and potential applications of FSSs
2.3 Plasmonics and Propagation of light in Metals
2.3.1 Spoof Surface Plasmon Polaritons
2.3.2 Planar Spoof SPP Structures
2.3.3 Importance of Spoof SPPs Studies
2.3.4 Problems in Transmission Through Spoof SPPs Devices
2.3.5 Spoof SPPs for High Speed Circuits
2.3.6 Theory of Surface Plasmon Polaritons-Dispersion Relation
2.3.7 Spoof SPPs Transmission Line Generic Structure
2.3.8 Earlier Research Review and Analysis
2.4 Conclusion of Chapter
Chapter 3 Broadband third-order AFA based FSS at high oblique AOI
3.1 Background
3.2 Performance characteristics of FSS
3.3 Fractals Geometry and AFA based Array Structures
3.4 Proposed Solution
3.5 Results and Design Analysis
3.6 Conclusion of Chapter
Chapter 4 Miniaturization of FSS based on Fractal Arrays with Square Slots for Enhanced Bandwidth
4.1 Background
4.2 Efficiency requirements of FSSs
4.3 Miniaturization versus BW in Earlier Schemes
4.4 Advanced Concept of AFA design
4.5 Proposed Design Structure and Principle
4.5.1 Proposed Design Structure
4.5.2 Principle and design process
4.6 Simulation Results and Analysis
4.6.1 Effect of Fractal Ratios on Frequency Response
4.6.2 Effect of Central Square Slot on Frequency Response
4.6.3 Effect of varing Incidence Angles on Frequency Response
4.6.4 Effect of Cross Polarization
4.7 Experimental verification and measurement results
4.8 Conclusion of Chapter
Chapter 5 Polarization Insensitive FSS at Ka-band
5.1 Background
5.2 Frequency regimes of X, Ku, K, and Ka-bands
5.3 Proposed FSS Structure and Analysis
5.3.1 Parametric Analysis
5.3.2 Optimized Filter
5.4 Conclusion of Chapter
Chapter 6 Role of Surface Geometric Patterns and Parameters in the Dispersion Relations ofSpoof SPPs at Microwave Frequency
6.1 Manipulation of EM waves through subwavelength Structures
6.1.1 Achieving Spoof SPPs in the Microwave regime
6.2 Dispersion Relations and Analysis
6.2.1 Field Confinement Analysis
6.3 Structure Design of Low-Pass Plasmonic Filter
6.4 Conclusion of Chapter
Chapter 7 Novel Spoof SPPs on Planar Metallic Strip with Periodic Semi-Elliptical Groovesat Microwave Frequency
7.1 Background and Significant Features of plasmonic structures
7.2 Researches on Corrugated plasmonic structures
7.3 Proposed MM Structure with the periodic semi-elliptical groove on the thin metalstrip
7.3.1 Proposed Structure Design and Comparison
7.3.2 Dispersion Graphs
7.3.3 Comparison of different dispersion relations
7.3.4 Effect of Structure Parameters on Dispersion Relations
7.4 High-Efficiency Low-Pass Plasmonic Filter Structure Design and Analysis
7.4.1 Dependence of the cutoff frequency on depth of the grooves
7.5 Experimental Verification
7.6 Conclusion of Chapter
Chapter 8 Conclusion of Research
8.1 Research Discussion and conclusion
8.2 Future Work
References
Acknowledgement
作者簡歷及在學研究成果
學位論文數(shù)據(jù)集
【參考文獻】:
期刊論文
[1]周期性亞波長金屬孔陣列的單元結(jié)構(gòu)對稱性對其增強光透射特性的影響[J]. 袁志,劉輝,陳志勇,朱衛(wèi)華,郭瑋,王新林. 光子學報. 2015(11)
[2]對稱雙屏Butterworth型頻率選擇表面的設(shè)計[J]. 徐念喜,馮曉國,梁鳳超,王巖松,高勁松. 光學精密工程. 2011(07)
[3]多頻段十字分形頻率選擇表面[J]. 王珊珊,高勁松,梁鳳超,王巖松,陳新. 物理學報. 2011(05)
本文編號:2985227
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2985227.html
最近更新
教材專著