摻雜氮化硼納米帶電學(xué)特性的理論研究
發(fā)布時間:2020-12-23 22:52
因為六方氮化硼石墨烯具有相似的結(jié)構(gòu),氮化硼納米帶引起了科學(xué)家的注意。盡管有相似之處,但BN納米材料具有完全不同的化學(xué)和物理性質(zhì)。與導(dǎo)體石墨烯不同,BNNR是具有寬帶隙,高熱穩(wěn)定性,機械強度等的半導(dǎo)體。氮化硼納米帶的幾何結(jié)構(gòu)可能會創(chuàng)建可替代石墨烯納米帶的替代材料的關(guān)鍵。通過改變寬度手性邊緣修飾以及引入空位和摻雜缺陷等方法來控制BNNR的帶隙和電學(xué)性能和磁性能。本文采用基于第一性原理的密度泛函理論研究了碳摻雜對單層和雙層氮化硼納米帶參數(shù)的影響。計算結(jié)果表明,碳摻雜減少了所有BNNR研究類型的帶隙并增加了電導(dǎo)率。作為能帶結(jié)構(gòu)和態(tài)密度圖分析的結(jié)果,在所有結(jié)構(gòu)中都發(fā)現(xiàn)了邊緣效應(yīng),即,與中心替代相比,對于雙層納米帶,邊緣替代在能帶結(jié)構(gòu)圖中導(dǎo)致了更多的雜質(zhì)態(tài)。雜質(zhì)態(tài)的數(shù)量大于單層的數(shù)量。另外,這些狀態(tài)更靠近帶隙的中間而對于中心替代,雜質(zhì)狀態(tài)更靠近帶隙的邊界。這種現(xiàn)象導(dǎo)致電導(dǎo)率進一步增加并且?guī)秾挾葴p小。氮原子替代將BNNR變成p型半導(dǎo)體,而硼原子替代的BNNR變成n型半導(dǎo)體。雙層納米帶具有比單層小的帶隙。另外,所有的摻雜結(jié)構(gòu)都是自旋極化的并且是磁性的,而所有的本征納米帶都是非磁性的半導(dǎo)體。因此,碳摻...
【文章來源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校
【文章頁數(shù)】:92 頁
【學(xué)位級別】:碩士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Source of the Topic
1.2 Research Background and Significance
1.3 Status of Researches in Related Fields at Home and Abroad
1.3.1 Research Status of Boron Nitride Nanoribbon Properties
1.3.2 Multi-layered Boron Nitride Nanomaterials Research Status
1.3.3 Analysis of Literature Review
1.4 Main Research Content
Chapter 2 Theoretical Basics and Simulation Software
2.1 Introduction
2.2 Density Functional Theory Basics
2.2.1 DFT Background
2.2.2 Hartree-Fock Approximation
2.2.3 Density Functional Theory
2.3 Materials Studio Software
2.3.1 DMol3 Module
2.3.2 CASTEP Module
2.4 Chapter Conclusion
Chapter 3 Single Layer Boron Nitride Nanoribbon Research
3.1 Introduction
3.2 Study of Pure BNNR
3.2.1 Model Building
3.2.2 Geometry Optimization
3.2.3 Electronic Properties Calculation
3.3 Study of Carbon Doped BNNR
3.3.1 Features of Model Building
3.3.2 Study of BNNR with Carbon-Nitrogen Atom Substitution
3.3.3 Study of BNNR with Carbon-Boron Atom Substitution
3.4 Chapter Conclusion
Chapter 4 Research of Boron Nitride Nanoribbon Bilayer
4.1 Introduction
4.2 Pure BNNR Bilayer
4.2.1 Bilayer Model Building
4.2.2 Geometry Optimization
4.2.3 Electronic Properties Calculation
4.3 Carbon Doped BNNR Bilayer
4.3.1 Features of Doped BNNR Bilayer Model Building
4.3.2 Doped BNNR Bilayer Geometry Optimization
4.3.3 Electronic Properties Calculation
4.4 Chapter Conclusion
Conclusion
結(jié)論
References
Acknowledgement
本文編號:2934478
【文章來源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校
【文章頁數(shù)】:92 頁
【學(xué)位級別】:碩士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Source of the Topic
1.2 Research Background and Significance
1.3 Status of Researches in Related Fields at Home and Abroad
1.3.1 Research Status of Boron Nitride Nanoribbon Properties
1.3.2 Multi-layered Boron Nitride Nanomaterials Research Status
1.3.3 Analysis of Literature Review
1.4 Main Research Content
Chapter 2 Theoretical Basics and Simulation Software
2.1 Introduction
2.2 Density Functional Theory Basics
2.2.1 DFT Background
2.2.2 Hartree-Fock Approximation
2.2.3 Density Functional Theory
2.3 Materials Studio Software
2.3.1 DMol3 Module
2.3.2 CASTEP Module
2.4 Chapter Conclusion
Chapter 3 Single Layer Boron Nitride Nanoribbon Research
3.1 Introduction
3.2 Study of Pure BNNR
3.2.1 Model Building
3.2.2 Geometry Optimization
3.2.3 Electronic Properties Calculation
3.3 Study of Carbon Doped BNNR
3.3.1 Features of Model Building
3.3.2 Study of BNNR with Carbon-Nitrogen Atom Substitution
3.3.3 Study of BNNR with Carbon-Boron Atom Substitution
3.4 Chapter Conclusion
Chapter 4 Research of Boron Nitride Nanoribbon Bilayer
4.1 Introduction
4.2 Pure BNNR Bilayer
4.2.1 Bilayer Model Building
4.2.2 Geometry Optimization
4.2.3 Electronic Properties Calculation
4.3 Carbon Doped BNNR Bilayer
4.3.1 Features of Doped BNNR Bilayer Model Building
4.3.2 Doped BNNR Bilayer Geometry Optimization
4.3.3 Electronic Properties Calculation
4.4 Chapter Conclusion
Conclusion
結(jié)論
References
Acknowledgement
本文編號:2934478
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2934478.html
最近更新
教材專著