溫和條件下不同形貌氧化鎢的控制合成及其氣敏性能研究
[Abstract]:Can effectively control the structure, the size and the appearance of the inorganic compound, and is a prerequisite for manufacturing various nano-devices. The semiconductor sensor has the advantages of sensitivity, long service life and the like, and in order to further improve the performance of the semiconductor sensor, the scientific research worker has carried out a lot of research work, such as controlling the structure, the size and the appearance of the semiconductor oxide by adopting a chemical method. The tungsten trioxide has a special crystal structure and physical and chemical properties, and the preparation of the tungsten trioxide powder material with the special dimension structure is widely used through different methods, but the defects of low controllability, low production efficiency, complex process and the like exist. Therefore, the WO3 nano material with controllable nanometer size and uniform appearance is still difficult to obtain through a method of simple operation, low cost and industrialization prospect. If the structure of the nano-material can be further optimized by analyzing the growth mechanism and the characteristics of the morphology, the stability of the preparation process can be improved, and the application of the gas-sensitive performance can be improved. The main work of the project is to control the synthesis of tungsten oxide nano-materials with different dimensions and different shapes by means of a hydrothermal method, a water bath method and the like of a template and an auxiliary agent, The microstructure and micro-morphology of the materials were characterized by HRTEM and SAED, and the growth mechanism was studied by using the crystal structure analysis software Diamond and the like. The optimum operating temperature, sensitivity, selectivity, detection limit and stability gas-sensitive performance parameters were obtained under different temperature and other conditions, and the effect of microstructure on gas-sensitive performance was analyzed. The purpose of this paper is to find a simple and convenient method for the controllable growth of tungsten oxide-based nano-materials, such as one-dimensional and two-dimensional, through the research and improvement of the synthesis process, to study the mechanism of growth and to provide guidance for the interpretation and improvement of gas-sensing performance. in addition, the preparation process is optimized, the tungsten oxide nano material with the nano-grade structure is synthesized, the growth mechanism of the tungsten oxide nano material is analyzed, the gas-sensitive performance of the tungsten oxide nano-material is tested, the influence and the effect of the graded nano-structure on the gas-sensitive performance are discussed, And provides a reference for controlling synthesis and modification of tungsten trioxide with complex structure. The main conclusions of this paper are as follows:1-D nano-wire-like tungsten oxide: the h-WO3 nanowires are controlled by adding appropriate amount of Na2SO4 and K2SO4 as a blocking agent under the hydrothermal condition, The reason for its one-dimensional directional growth is the anisotropic growth due to the presence of Na + and K + ions and the adsorption of SO42-ions. The powder has good gas-sensing performance for the two toxic and harmful gases of ethanol and formaldehyde, and the response sensitivity of the two gases can be more than 10 for 10 ppm under the condition of 300 DEG C, and has good selectivity and high application potential. A two-dimensional nano-sheet tungsten oxide is prepared by adding malic acid (C4H6O5) by a hydrothermal method to control the monodispersed WO3 路 H2O nano-sheet structure of the synthesis rule, the selective adsorption of the malic acid on the crystal face is an important reason for forming the nano sheet, (010) is the main exposed surface, The thickness can be controlled by adjusting the reaction time, and the selective adsorption and the different reaction time of the malic acid on the (010) crystal plane result in the generation of WO3 路 H2O nanosheets with different thicknesses. The gas-sensitive performance test shows that the two kinds of sensors with the thickness of 20-30 nm and ~ 100 nm have good gas-sensing performance. The response sensitivity of the 300 oC for 100 ppm ethanol gas is 29.8 and 26.1, respectively. Further comparison and analysis revealed that the thin WO3 路 H2O nanosheet powder exhibited better gas-sensing performance due to the higher exposure of the (010) crystal face and higher reactivity. The tungsten oxide of a three-dimensional hierarchical structure can be controlled under hydrothermal or water-bath conditions, and the growth mechanism of the WO3 powder material can be controlled and the excellent gas-sensing properties of the WO3 powder material can be proved. the C/ WO3 composite submicroballoon is prepared by a hydrothermal method by using the C microsphere as a template, and the WO3 submicroballoon with the mesoporous structure is obtained by further sintering, The response to 50 ppm of ethanol gas can reach 17.7. In addition, the formation of the sea urchin-like hexagonal h-WO3 microballoon was successfully prepared by the addition of K2SO4-assisted hydrothermal method, and it was found that K2SO4 had a great effect on the formation of the sea urchin-like structure. The sensitivity of the response to 400 ppm of ethanol at the time of 300 oC can reach 17. In addition, the WO 路 H2O nano-flower structure was successfully prepared by the oxalic acid-assisted water bath method, and it was found that WO3 路 H2O prepared at the W/ C ratio of 1: 1.6 has the best crystallization property and better assembled nano-flower structure. The experimental results show that the three-dimensional hierarchical structure can improve the specific surface area, avoid the aggregation of the nano-particles, and improve the gas-sensing performance.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.1;O614.613
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉生;李?yuàn)?曹明;李樹(shù)靜;杜占;鄭建旭;蔣登高;;聚苯胺/鎢硅酸復(fù)合材料氣敏性能研究[J];河南化工;2012年03期
2 潘慶誼;徐甲強(qiáng);劉銘;王國(guó)喜;;α-Fe_2O_3超微粒的制備及其氣敏性能的研究[J];河南科學(xué);1990年02期
3 張?zhí)焓?沈瑜生;;鋅、錫復(fù)合氧化物的制備、相組成與氣敏性能的關(guān)系[J];功能材料;1993年05期
4 宋金玲;周長(zhǎng)才;劉瑞平;蔡穎;張胤;;溶膠-凝膠法制備摻雜稀土的二氧化鈦及其對(duì)丙酮?dú)饷粜阅苎芯縖J];內(nèi)蒙古科技大學(xué)學(xué)報(bào);2012年03期
5 宋金玲;周長(zhǎng)才;牟連維;郭冠銘;蔡穎;張胤;;溶膠-凝膠法制備摻雜稀土元素二氧化鈦及其氣敏性能[J];過(guò)程工程學(xué)報(bào);2013年01期
6 陳思順,陳新華,丁明潔,牛新書(shū);釔摻雜納米α-Fe_2O3_的合成及氣敏性能研究[J];電子元件與材料;2005年09期
7 陳思順;陳新華;丁明潔;牛新書(shū);;摻雜合成納米α-Fe_2O_3粉體及其氣敏性能研究[J];傳感器與微系統(tǒng);2006年03期
8 王燕;張戰(zhàn)營(yíng);曹建亮;路長(zhǎng);孫廣;王杰;;化學(xué)沉淀法制備納米α-Fe_2O_3及其氣敏性能研究[J];河南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年02期
9 王曉玲,羅延齡,張寶旺,桑德文;聚乙二醇接枝炭黑納米導(dǎo)電復(fù)合材料氣敏性研究[J];江蘇化工;2004年01期
10 程知萱,李玲,陳海華,潘慶誼;摻雜納米NiO粉體材料的氣敏性能研究[J];鄭州輕工業(yè)學(xué)院學(xué)報(bào);2004年04期
相關(guān)會(huì)議論文 前10條
1 劉杏芹;劉亞飛;高峰;;一種新型鎘銻氧化物復(fù)合材料的氣敏性能及其摻雜改性[A];第三屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];1998年
2 左霞;王彬;吳誼群;;八異戊氧基金屬萘酞菁配合物旋涂膜的氣敏性研究[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(7)[C];2007年
3 李堅(jiān);王元生;黃兆新;;納米氧化鐵粉體的制備和氣敏性能研究[A];第三屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];1998年
4 程知萱;李玲;陳海華;潘慶誼;;摻雜納米NiO粉體材料的氣敏性能研究[A];第八屆全國(guó)氣濕敏傳感器技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2004年
5 董先明;羅穎;解麗娜;唐開(kāi)聰;陳鑫玨;;炭黑/聚乙二醇/聚甲基丙烯酸甲酯復(fù)合材料的導(dǎo)電性能與氣敏性能研究[A];2007年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(下冊(cè))[C];2007年
6 李玲;祁晴晴;張樂(lè)喜;別利劍;;花狀分級(jí)結(jié)構(gòu)α-Fe_2O_3微球的制備及其氣敏性能[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第33分會(huì):納米材料合成與組裝[C];2014年
7 楊曉娟;沈水發(fā);劉爾生;楊素苓;陳耐生;黃金陵;;鐵酸鹽系列納米晶的制備及其氣敏性[A];第三屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];1998年
8 劉婧媛;陳曉爽;景曉燕;;三維花狀氧化鋅的可控合成及其氣敏性能研究[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第33分會(huì):納米材料合成與組裝[C];2014年
9 劉錦淮;孟凡利;劉金云;;半導(dǎo)體納米結(jié)構(gòu)的氣敏性能與納米整流器件研究[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第4分會(huì)場(chǎng)摘要集[C];2012年
10 潘慶誼;張劍平;程知萱;董曉雯;王廷富;;紡錘形納米γ-Fe_2O_3的氣敏性能[A];第六屆全國(guó)氣濕敏傳感器技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2000年
相關(guān)博士學(xué)位論文 前10條
1 葛春橋;金屬氧化物納米材料的濕法制備及其氣敏性能研究[D];華中科技大學(xué);2008年
2 謝英男;聚苯胺基復(fù)合材料的制備及其氣敏性能研究[D];鄭州大學(xué);2008年
3 秦楠;氧化鋅基納米材料的制備、氣敏性能研究及第一性原理計(jì)算[D];上海大學(xué);2014年
4 楊穎;氧化物與晶態(tài)碳異質(zhì)結(jié)構(gòu)構(gòu)筑及氣敏性能研究[D];黑龍江大學(xué);2014年
5 張文惠;半導(dǎo)體金屬氧化物的制備、表征及其氣敏性能研究[D];華南理工大學(xué);2011年
6 孫立輝;LaFeO_3基氧化物對(duì)還原性氣體的氣敏性與機(jī)制研究[D];山東大學(xué);2013年
7 詹自力;納米In_2O_3氣敏性能及其氣敏機(jī)理研究[D];鄭州大學(xué);2003年
8 馮彩慧;摻雜、造孔對(duì)常見(jiàn)低維納米材料氣敏性能的影響[D];吉林大學(xué);2013年
9 任富建;納米結(jié)構(gòu)二氧化鈦薄膜的制備及其氣敏特性研究[D];清華大學(xué);2011年
10 王燕;低維α-Fe_2O_3納米材料的合成、改性及氣敏性能研究[D];南開(kāi)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 祁晴晴;氧化鉬微結(jié)構(gòu)控制合成及氣敏性能[D];天津理工大學(xué);2015年
2 鄭輝;納米結(jié)構(gòu)氧化錫的離子熱合成及氣敏特性研究[D];浙江大學(xué);2015年
3 王超;石墨稀負(fù)載p型-n型半導(dǎo)體氧化物及其氣敏性能研究[D];南京理工大學(xué);2015年
4 張肖妮;鎢氧化物納米材料的制備、改性及氣敏性能研究[D];大連海事大學(xué);2015年
5 黃海云;氧化鋅納米線的制備及其對(duì)痕量H_2S的氣敏性能研究[D];上海應(yīng)用技術(shù)學(xué)院;2015年
6 劉中興;金屬氧化物半導(dǎo)體對(duì)CO_2的氣敏性研究[D];山東大學(xué);2015年
7 宋明艷;金屬硫化物材料的制備、改性及氣敏性能研究[D];大連海事大學(xué);2015年
8 薛婕;氧化鋅表面結(jié)構(gòu)的調(diào)控及其氣敏性能研究[D];北京化工大學(xué);2015年
9 趙楊波;改性提高氧化鋅納米晶體的氣敏性能及第一性原理計(jì)算[D];北京化工大學(xué);2015年
10 陳超;摻雜MoO_3納米晶體及MoO_3復(fù)合物的制備及其氣敏性能研究[D];北京化工大學(xué);2015年
,本文編號(hào):2479226
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2479226.html